首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
The amelogenin (AMEL) gene exists on both sex chromosomes of various mammalian species and the length and sequence of the noncoding regions differ between the two chromosome-specific alleles. Because both forms can be amplified using a single primer set, the use of AMEL in polymerase chain reaction (PCR)-based methods has facilitated sex identification in various mammalian species, including cattle, sheep and humans. In this study, we designed PCR primers to yield different-sized products from the AMEL genes on the X (AMELX) and Y (AMELY) chromosomes of pigs. PCR amplification of genomic DNA samples collected from various breeds of pigs (European breeds: Landrace, Large White, Duroc and Berkshire; Chinese breeds: Meishan and Jinhua and their crossbreeds) yielded the expected products. For all breeds, DNA from male pigs produced two bands (520 and 350 bp; AMELX and AMELY, respectively), whereas samples from female pigs generated only the 520 bp product. We then tested the use of PCR of AMEL for sex identification of in vitro-produced (IVP) porcine embryos sampled at 2 or 5 to 6 days after fertilization; germinal vesicle (GV)-stage oocytes and electroactivated embryos were used as controls. More than 88% of the GV-stage oocytes and electroactivated embryos yielded a single 520 bp single band and about 50% of the IVP embryos tested produced both bands. Our findings show that PCR analysis of the AMEL gene is reliable for sex identification of pigs and porcine embryos.  相似文献   

2.
Sequence length polymorphisms between the amelogenin (AMELX) and the amelogenin-like (AMELY) genes both within and between several mammalian species have been identified and utilized for sex determination, species identification, and to elucidate evolutionary relationships. Sex determination via polymerase chain reaction (PCR) assays of the AMELX and AMELY genes has been successful in greater apes, prosimians, and two species of old world monkeys. To date, no sex determination PCR assay using AMELX and AMELY has been developed for new world monkeys. In this study, we present partial AMELX and AMELY sequences for five old world monkey species (Mandrillus sphinx, Macaca nemestrina, Macaca fuscata, Macaca mulatta, and Macaca fascicularis) along with primer sets that can be used for sex determination of these five species. In addition, we compare the sequences we generated with other primate AMELX and AMELY sequences available on GenBank and discuss sequence length polymorphisms and their usefulness in sex determination within primates. The mandrill and four species of macaque all share two similar deletion regions with each other, the human, and the chimpanzee in the region sequenced. These two deletion regions are 176-181 and 8 nucleotides in length. In analyzing existing primate sequences on GenBank, we also discovered that a separate six-nucleotide polymorphism located approximately 300 nucleotides upstream of the 177 nucleotide polymorphism in sequences of humans and chimps was also present in two species of new world monkeys (Saimiri boliviensis and Saimiri sciureus). We designed primers that incorporate this polymorphism, creating the first AMELX and AMELY PCR primer set that has been used successfully to generate two bands in a new world monkey species.  相似文献   

3.
Sex-specific sequence variability of the amelogenin gene had been observed in a variety of mammalian species. In our study, the suitability of the amelogenin gene for sex determination in different species of the family Bovidae was examined. Based on a sequence insertion/deletion characteristic for X- and Y-specific amelogenin (AMELX and AMELY), PCR amplification on male and female genomic DNA from domestic and wild bovine species, sheep and goat, consistently displayed a sex-specific pattern. Thus, the amelogenin amplification by PCR proved to be a reliable method for sex determination not only in domestic and wild species of the tribe Bovini, but also in the related species sheep and goat. Sex determination using the amelogenin-based assay can be performed with at least 40 pg of genomic DNA. The assay enables the investigation of small amounts of DNA from meat, hair, bones, and embryo biopsies to identify species and sex for a number of applications in animal production, forensics, population research, and monitoring within the family Bovidae. Sequence comparison of the amplified amelogenin gene region specific for male and female animals from domestic and wild bovide species revealed further sequence variations within and between sexes as well as between species. Sequence variations in the AMELX gene can be applied to discriminate Bos and Bison individuals from other bovine species, and also from sheep and goat.  相似文献   

4.
The present study attempts to analyse sequences of the X- and Y-chromosome specific regions of the amelogenin (AMEL) gene in red deer. To this end, primers specific for each form of the gene (AMELX and AMELY) were designed based on bovine genomic sequences and the homologous regions of the genes were sequenced. The obtained sequence of AMELX gene showed high similarity with the corresponding region in cattle (91%) and humans (77%), but this similarity was slightly lower among AMELY genes and showed 87 and 73% of identical nucleotides, respectively. In addition, three single nucleotide polymorphisms (SNPs) were found in the AMELX gene of the female red deer investigated. Comparative analysis of the homologous fragments of the red deer AMELX and AMELY genes confirmed the deletion of an AMELY gene fragment in relation to AMELX. Homology of both sequences was 82% of identical nucleotides in the coding region and 74% in 3′ non-coding sequence. The sequences studied showed considerable similarity to homologous fragments of the human and bovine gene, but the structural differences observed lead us to design PCR-based method for sex identification in red deer, based on the presented sequences.  相似文献   

5.
Sex specific sequence variability of the amelogenin gene has been used for sex determination in the family of Bovidae. In our study, suitability and reliability of the amelogenin gene for ovine sex determination in embryos was studied. The specificity of the method was previously demonstrated by testing 579 blood samples from several Spanish sheep breeds (161 males and 198 females). No amplification failures and very high agreement between genotypic and phenotypic sex was found (578/579), in contrast to humans, where errors in sex determination has been reported because of mutations in AMELX or AMELY genes. However, one female animal showed a male genotypic sex, being the most plausible explanation that a recombination event has happened during the meiosis. In our study only 0.17% (1/579) of the samples tested has been misdiagnosed using the amelogenin gene. Finally, 1-10 cells from each of 67 compact morulae were aspirated through the zona pellucida, and genotyped for sex determination. The efficiency in sex determination was 95 and 98% when more than two and more than three cells were sampled, respectively. The total time required for the genetic test, was less than 4h. These results confirm that the amelogenin gene can be used for rapid sex determination in ovine embryos, with a high efficiency and accuracy (100%) when three or more cells are sampled, allowing transferring sexed fresh embryos in MOET programmes. To our knowledge, this was the first time that sex determination using the amelogenin gene was performed in ovine embryos.  相似文献   

6.
We developed an inexpensive, fast and reliable PCR method for sex identification of giant panda (Ailuropoda melanoleuca) by using one pair of primers to co-amplify homologous fragments with size polymorphism that located at amelogenin (AMEL) exon 5. In giant panda, a 63 bp deletion in exon 5 of Y-linked allele provides a significant discrimination between AMELX and AMELY, thus the amplification products can be distinguished simply by agarose gel electrophoresis, exhibiting sex-specific banding patterns (male: 237 bp, 174 bp; female: 237 bp). Both blood and feces samples from known-sex giant pandas were successfully amplified. Cross species test also revealed that this method could be applied to other Ursidae species. These authors contributed equally to this work.  相似文献   

7.
Ren J  Knorr C  Huang L  Brenig B 《Gene》2004,340(1):19-30
  相似文献   

8.
9.
CD1 is an MHC class I-like protein that presents lipid antigens to T cell receptors. We determined 470,187 bp of the genomic sequence encompassing the region encoding porcine CD1 genes. We identified 16 genes in this region and newly identified CD1A2, CD1B, CD1C, CD1D, and CD1E. Porcine CD1 genes were located in clusters between KIRREL and olfactory receptor (OR) genes, as observed in humans, although they were divided into two regions by a region encoding OR genes. Comparison of the genomic sequences of CD1 gene loci in pigs with other mammals showed that separation of the CD1 gene cluster by ORs was observed only in pigs. CD1A duplication in the porcine genome was estimated to have occurred after the divergence of the human and porcine. This analysis of the genomic sequence of the porcine CD1 family will contribute to our understanding of the evolution of mammalian CD1 genes.  相似文献   

10.
The interaction of gonadotropin-releasing hormone (GNRH) and its receptor (GNRHR) is critical in the endocrine regulation of reproduction. The gene (GNRHR) encoding the receptor has been mapped to porcine chromosome 8. There is evidence for three quantitative trait loci (QTL) influencing ovulation rate on this chromosome. We obtained an almost complete sequence (3993 bp, excluding intron 1) of the porcine GNRHR gene using PCR-based comparative genomic walking and inverse genomic walking approaches. Twelve polymorphisms were detected by sequencing of pooled DNA of Chinese Taihu and European Large White pigs, including 7 base substitutions and 5 insertions-deletions (indels). A F2 population of Meishan x European Large White pigs was genotyped for a TG indel in the promoter region, and a C/G substitution in the 3' UTR (untranslated region). A significant association of the C/G substitution with number of corpora lutea at first parity was observed.  相似文献   

11.
12.
The discovery of cell-free fetal DNA (cfDNA) circulating in the maternal blood has provided new opportunities for noninvasive prenatal diagnosis (NIPD). However, the extremely low levels of cfDNA within a high background of the maternal DNA in maternal circulation necessitate highly sensitive molecular techniques for its reliable use in NIPD. In this proof of principle study, we evaluated the earliest possible detection of cfDNA in the maternal plasma by a bead-based emulsion PCR technology known as BEAMing (beads, emulsion, amplification, magnetics). Blood samples were collected from in vitro fertilization (IVF) patients at 2 to 6 weeks following embryo transfer (i.e., 4 to 8 week pregnancies) and plasma DNA was extracted. The genomic regions of both X and Y chromosome-specific sequences (AMELX and AMELY) were concurrently amplified in two sequential PCRs; first by conventional PCR then by BEAMing. The positive beads either for AMELX or AMELY gene sequences were counted by a flow cytometer. Our results showed that the pregnancies yielding boys had significantly higher plasma AMELY gene fractions (0.512 ± 0.221) than the ones yielding girls (0.028 ± 0.003) or non-pregnant women (0.020 ± 0.005, P= 0.0059). Here, we clearly demonstrated that the BEAMing technique is capable of reliably detecting cfDNA in the blood circulation of 4-week-pregnant women, which is only two weeks after the embryo transfer. BEAMing technique can also be used to early detect fetal DNA alterations in other pregnancy-associated disorders.  相似文献   

13.
14.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Meishan and Large White pigs. One novel mRNA that was differentially expressed was identified through semi-quantitative RT-PCR and the full-length cDNA sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the mRNA is not homologous to any of the known porcine genes. Sequence prediction analysis revealed that this mRNA is no-coding mRNA. Polymorphism analyses revealed that there was a C-T mutation on the position of 505 bp and PCR-HhaI-RFLP analyses revealed that Chinese indigenous pig breeds and exotic pig breeds displayed obvious genotype and allele frequency differences at this locus. Association analyses revealed that this polymorphic locus was significantly associated with the drip loss rate, water holding capacity, dressing percentage, rib numbers, lean meat percentage, estimated lean meat percentage, loin eye width and loin eye area (< 0.05).  相似文献   

15.
16.
Structure and expression of the bovine amelogenin gene   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Meishan and Large White pigs. One novel mRNA that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the mRNA is not homologous to any of the known porcine genes. Sequence prediction analysis revealed that the this mRNA is not protein-coding mRNA. Polymorphism analyses revealed that there was a C-T mutation on the position of 669 bp and PCR -Dra I-RFLP analyses revealed that Chinese indigenous pig breeds and exotic pig breeds displayed obvious genotype and allele frequency differences at this locus. Association analyses revealed that this polymorphic locus was significantly associated with the drip loss rate, skin percentage, meat color value (m.Longissimus Dorsi, LD), loin eye width, loin eye area, water holding capacity, carcass length, caul fat weight, intramuscular fat (m.Longissimus Dorsi, LD), lean meat weight, lean meat percentage, backfat thickness at buttock (< 0.05).  相似文献   

19.
20.
A human X-Y homologous region encodes "amelogenin"   总被引:21,自引:0,他引:21  
Results of cloning and sequencing of genomic sequences from the X and Y chromosomes that encode the tooth enamel gene amelogenin (both AMG and AMGL) are described. Three exons are defined on both the X and Y sequences. The nucleotide sequences reported here offer basic information for investigating human amelogenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号