首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacteriocins are antimicrobial peptides produced by bacteria to inhibit competitors in their natural environments. Some of these peptides have emerged as commercial food preservatives and, due to the rapid increase in antibiotic resistant bacteria, are also discussed as interesting alternatives to antibiotics for therapeutic purposes. Currently, commercial bacteriocins are produced exclusively with natural producer organisms on complex substrates and are sold as semi-purified preparations or crude fermentates. To allow clinical application, efficacy of production and purity of the product need to be improved. This can be achieved by shifting production to recombinant microorganisms.Here, we identify Corynebacterium glutamicum as a suitable production host for the bacteriocin pediocin PA-1. C. glutamicum CR099 shows resistance to high concentrations of pediocin PA-1 and the bacteriocin was not inactivated when spiked into growing cultures of this bacterium. Recombinant C. glutamicum expressing a synthetic pedACDCgl operon releases a compound that has potent antimicrobial activity against Listeria monocytogenes and Listeria innocua and matches size and mass:charge ratio of commercial pediocin PA-1. Fermentations in shake flasks and bioreactors suggest that low levels of dissolved oxygen are favorable for production of pediocin. Under these conditions, however, reduced activity of the TCA cycle resulted in decreased availability of the important pediocin precursor l-asparagine suggesting options for further improvement. Overall, we demonstrate that C. glutamicum is a suitable host for recombinant production of bacteriocins of the pediocin family.  相似文献   

3.
The lactic acid bacteria (LAB) are of great interest because of their food grade quality and industrial importance. In the recent past, the pediocin PA-1 like bacteriocin was found to be synthesized in cross-species and cross-genera. Hence, the present work was carried out in order to determine the transfer of plasmid encoded pediocin PA-1 like bacteriocin among LAB. The objective of this study is to demonstrate the dissemination of bacteriocin-encoded plasmid from Pediococcus acidilactici NCIM 5424, Enterococcus faecium NCIM 5423 and Lactobacillus plantarum Acr2 to Enterococcus faecalis JH2-2 under in vitro (filter mating method) and in situ (soymilk model) conditions. The fermentation of the soymilk was determined by the selected pediocin producers. E. faecium NCIM 5423 was able to transfer the bacteriocin only under in situ conditions, whereas the native pediocin producer P. acidilactici NCIM 5424 transferred the bacteriocin under both the methods used. The in situ method gave more transfer frequency, ranging from 10?7 to 10?4 transconjugants per recipient cell. No conjugal transfer by L. plantarum Acr2 was observed. The physiological conditions like pH and temperature were found to influence the production of bacteriocin in the obtained transconjugants. The results suggest the horizontal gene transfer (HGT) and the natural spread of pediocin PA-1-like bacteriocin among LAB present in their close vicinity by means of conjugation. The dissemination of pediocin PA-1-like bacteriocin under in situ conditions is noteworthy, and such bacteriocin producers can be useful in the fermentation of dairy products and construction of novel cultures.  相似文献   

4.
Bacteriocins are antimicrobial peptides produced by several bacterial species. Among the bacteriocins pediocin-like bacteriocins have a significant inhibitory activity on the foodborne pathogens especially on Listeria monocytogenes. This study aims to select a simple and usable purification method to purify/concentrate the antimicrobial peptide and characterization of the bacteriocin produced by Pediococcus acidilactici 13 by using proteomic approaches which is a recent omic technology. For purification dialysis, ultrafiltration method was used, and as a result of this study the bacteriocin activity reached 819,200 AU/mL from 102,400 AU/mL initially. Two dimensional gel electrophoresis and then matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) analysis were carried out to identify the current bacteriocin and related proteins. Obtained data revealed similarity to pediocin PA-1 transport/processing ATP-binding protein PedD (accession number: P36497), pediocin operon PedC (accession number: Q68GC4) and bacteriocin pediocin PA-1 (accession number: P29430) from UniProtKB/Swiss-Prot databank, thus the bacteriocin produced by P. acidilactici 13 is considered similar to pediocin PA-1.  相似文献   

5.
Rekhif  N.  Atrih  A.  Lefebvre  G. 《Current microbiology》1994,28(4):237-241
The frequency of spontaneous mutants ofListeria monocytogenes ATTC 15313 resistant to the inhibitory action of three bacteriocins of lactic acid bacteria previously discovered in our laboratory (mesenterocin 52, curvaticin 13, and plantaricin C19) was estimated to be in the range of 10–3 to 10–4. The phenotypic character of resistance was stable during several generations in the absence of contact with bacteriocins. The resistance was not due to the inactivation of bacteriocins nor to a modification of their adsorption on the target cells. The selected mutants resistant to one of the bacteriocin cited above showed a cross-resistance to the two other bacteriocins, but not to nisin.  相似文献   

6.
Nisin-, pediocin 34-, and enterocin FH99-resistant variants of Listeria monocytogenes ATCC 53135 were developed. In an attempt to clarify the possible mechanisms underlying bacteriocin resistance in L. monocytogenes ATCC 53135, sensitivity of the resistant strains of L. monocytogenes ATCC 53135 to nisin, pediocin 34, and enterocin FH99 in the absence and presence of different divalent cations was assessed, and the results showed that the addition of divalent cations significantly reduced the inhibitory activity of nisin, pediocin 34, and enterocin FH99 against resistant variants of L. monocytogenes ATCC 53135. The addition of EDTA, however, restored this activity suggesting that the divalent cations seem to affect the initial electrostatic interaction between the positively charged bacteriocin and the negatively charged phospholipids of the membrane. Nisin-, pediocin 34-, and enterocin-resistant variants of L. monocytogenes ATCC 53135 were more resistant to lysozyme as compared to the wild-type strain both in the presence as well as absence of nisin, pediocin 34, and enterocin FH99. Ultra structural profiles of bacteriocin-sensitive L. monocytogenes and its bacteriocin-resistant counterparts revealed that the cells of wild-type strain of L. monocytogenes were maximally in pairs or short chains, whereas, its nisin-, pediocin 34-, and enterocin FH99-resistant variants tend to form aggregates. Results indicated that without a cell wall, the acquired nisin, pediocin 34, and enterocin FH99 resistance of the variants was lost. Although the bacteriocin-resistant variants appeared to lose their acquired resistance toward nisin, pediocin 34, and enterocin FH99, the protoplasts of the resistant variants appeared to be more resistant to bacteriocins than the protoplasts of their wild-type counterparts.  相似文献   

7.
Two hybrid bacteriocins, enterocin E50-52/pediocin PA-1 (EP) and pediocin PA-1/enterocin E50-52 (PE), were designed by combining the N terminus of enterocin E50-52 and the C terminus of pediocin PA-1 and by combining the C terminus of pediocin PA-1 and the N terminus of enterocin E50-52, respectively. Both hybrid bacteriocins showed reduced MICs compared to those of their natural counterparts. The MICs of hybrid PE and EP were 64- and 32-fold lower, respectively, than the MIC of pediocin PA-1 and 8- and 4-fold lower, respectively, than the MIC of enterocin E50-52. In this study, the effect of hybrid as well as wild-type (WT) bacteriocins on the transmembrane electrical potential (ΔΨ) and their ability to induce the efflux of intracellular ATP were investigated. Enterocin E50-52, pediocin PA-1, and hybrid bacteriocin PE were able to dissipate ΔΨ, but EP was unable to deplete this component. Both hybrid bacteriocins caused a loss of the intracellular concentration of ATP. EP, however, caused a faster efflux than PE and enterocin E50-52. Enterocin E50-52 and hybrids PE and EP were active against the Gram-positive and Gram-negative bacteria tested, such as Micrococcus luteus, Salmonella enterica serovar Enteritidis 20E1090, and Escherichia coli O157:H7. The hybrid bacteriocins designed and described herein are antimicrobial peptides with MICs lower those of their natural counterparts. Both hybrid peptides induce the loss of intracellular ATP and are capable of inhibiting Gram-negative bacteria, and PE dissipates the electrical potential. In this study, the MIC of hybrid bacteriocin PE decreased 64-fold compared to the MIC of its natural peptide counterpart, pediocin PA-1. Inhibition of Gram-negative pathogens confers an additional advantage for the application of these peptides in therapeutics.  相似文献   

8.
Listeria monocytogenes is responsible for severe foodborne infections, which can be life-threatening especially for infants and elderly populations. The emergence of antibiotic-resistant pathogens has stimulated the search for new strategies, such as the use of bacteriocins, to prevent or cure foodborne infectious diseases in the intestine. In this study, we evaluated the efficacy of the bacteriocin pediocin PA-1 from Pediococcus acidilactici UL5 to inhibit Listeria ivanovii, used as a surrogate for L. monocytogenes, under physiological conditions of the terminal ileum, simulated in a continuous in vitro fermentation model. A fecal sample from a healthy adult was immobilized and propagated for 30?days in a continuous stirred tank reactor, fed with a nutritive medium simulating the ileal chime (pH 7.5). After reaching a pseudo-steady state, the reactor was inoculated five times with L. ivanovii to reach a final concentration of 107 CFU/ml within the reactor. Two spikes of L. ivanovii without adjunction of pediocin PA-1 served as control assays, and three other spikes were done to test the effects of three concentrations of pediocin PA-1 corresponding to 2, 3, and 5× the minimum inhibitory concentration (MIC) active against L. ivanovii. The concentration of L. ivanovii in the reactor was followed for 8?h using the PALCAM selective medium. The different groups of commensal bacteria were enumerated on selective medium or using fluorescence in situ hybridization. Our data showed that pediocin PA-1 is stable in the ileum conditions and that it is able to exert its inhibition activity against L. ivanovii in a dose-dependent manner. The addition of pediocin PA-1 at 5?×?MIC induced a complete disappearance of L. ivanovii (5 log reduction) within 5?h, compared to a reduction of 2 logs, corresponding to the washout phenomenon, when no pediocin PA-1 was added. Reduction of 0.8 and 1.3 logs within 8?h was also obtained with the addition of 2 and 3?×?MIC, respectively. The same experiment has shown that addition of pediocin-PA1 in the reactor had a negligible effect on the balance of commensal bacteria.  相似文献   

9.
BackgroundThe scope of the present work was to characterize the activity of class IIa bacteriocins in Listeria (L.) monocytogenes cells that constitutively express an activated form of PrfA, the virulence master regulator, since bacteriocin sensitivity was only characterized in saprophytic cells so far. The mannose phosphotransferase system (Man-PTS) has been shown to be the class IIa bacteriocin receptor in Listeria; hence, special attention was paid to its expression in virulent bacteria.MethodsL. monocytogenes FBprfA* cells were obtained by transconjugation. Bacterial growth was studied in TSB and glucose containing-minimal medium. Sensitivity to antimicrobial peptides was assessed by killing curves. Membranes of L. monocytogenes FBprfA* cells were characterized using proteomic and lipidomic approaches.ResultsThe mannose phosphotransferase system (Man-PTS) was downregulated upon expression of PrfA*, and these cells turned out to be more sensitive to enterocin CRL35 and pediocin PA-1, while not to nisin. Proteomic and lipidomic analysis showed differences between wild type (WT) and PrfA* strains. For instance, phosphatidic acid was only detected in PrfA* cells, whereas, there was a significant decline of plasmalogen-phosphatidylglycerol in the same strain.ConclusionsOur results support a model in which Man-PTS acts just as a docking molecule that brings class IIa bacteriocins to the plasma membrane. Furthermore, our results suggest that lipids play a crucial role in the mechanism of action of bacteriocins.General significanceThis is the first demonstration of the link between L. monocytogenes virulence and the bacterial sensitivity toward pediocin-like peptides.  相似文献   

10.
Lacticin 481, a bacteriocin produced during the growth of Lactococcus lactis subsp. lactis CNRZ 481, was purified sequentially by ammonium sulfate precipitation, gel filtration, and preparative and analytical reversed-phase high-pressure liquid chromatography. Ammonium sulfate precipitations resulted in a 455-fold increase in total lacticin 481 activity. The entire purification protocol led to a 107, 506-fold increase in the specific activity of lacticin 481. On the basis of its electrophoretic pattern in sodium dodecyl sulfate-polyacrylamide gels, lacticin 481 appeared as a single peptide band of 1.7 kDa. However, dimers of 3.4 kDa also exhibiting lacticin activity were detected. Derivatives of the lacticin-producing strain which did not produce lacticin 481 (Bac-) were sensitive to this bacteriocin (Bacs) and failed to produce the 1.7-kDa band. Amino acid composition analysis of purified lacticin 481 revealed the presence of lanthionine residues, suggesting that lacticin 481 is a member of the lantibiotic family of antimicrobial peptides. Seven residues (K G G S G V I) were sequenced from the N-terminal portion of lacticin 481, and these did not shown any homology with nisin or other known bacteriocin sequences.  相似文献   

11.
The class II bacteriocins pediocin PA-1, from Pediococcus acidilactici, and lactococcin A, from Lactococcus lactis subsp. lactis bv. diacetylactis WM4 have a number of features in common. They are produced as precursor peptides containing similar amino-terminal leader sequences with a conserved processing site (Gly-Gly at positions −1 and −2). Translocation of both bacteriocins occurs via a dedicated secretory system. Because of the strong antilisterial activity of pediocin PA-1, its production by lactic acid bacteria strains adapted to dairy environments would considerably extend its application in the dairy industry. In this study, the lactococcin A secretory system was adapted for the expression and secretion of pediocin PA-1. A vector containing an in-frame fusion of sequences encoding the lcnA promoter, the lactococcin A leader, and the mature pediocin PA-1, was introduced into L. lactis IL1403. This strain is resistant to pediocin PA-1 and encodes a lactococcin translocation apparatus. The resulting L. lactis strains secreted a bacteriocin with an antimicrobial activity of approximately 25% of that displayed by the parental pediocin-producing P. acidilactici 347. A noncompetitive indirect enzyme-linked immunosorbent assay with pediocin PA-1-specific antibodies and amino-terminal amino acid sequencing confirmed that pediocin PA-1 was being produced by the heterologous host.Bacteriocins of lactic acid bacteria have received considerable attention in recent years due to their potential application in the food industry as natural preservatives. Most interest has focused on lantibiotics (class I bacteriocins), e.g., nisin, and small heat-stable non-lanthionine-containing bacteriocins (class II) (22, 23). A major subgroup of class II bacteriocins (IIa) has been given the generic name of pediocin family (28) after its most extensively studied member, pediocin PA-1. Members of this class have a number of features in common, including a very strong antimicrobial activity against Listeria species (28). The food-borne pathogen Listeria monocytogenes is a major concern in the dairy industry since it can grow in a variety of dairy products at low temperature and pH (13). Although a pediocin PA-1-producing Lactobacillus plantarum strain has recently been isolated (12), this bacteriocin is generally produced by Pediococcus acidilactici strains of meat origin (3, 16, 18, 29, 31). Because of its antilisterial activity, the expression of pediocin PA-1 in strains of dairy origin would be highly desirable.Pediocin PA-1 production, immunity, and secretion are determined by an operon containing four genes (26). The structural gene, pedA, encodes the pediocin PA-1 precursor, pedB specifies immunity, and the pedC and pedD gene products are membrane-bound proteins required for secretion of the active peptide (39). Homologs of these genes have been described for related peptides. Biosynthesis of the well-characterized class II bacteriocin, lactococcin A, produced by strains of Lactococcus lactis also involves four genes (20, 36, 40). In addition to the structural gene (lcnA) and immunity gene (lciA), there are two genes (lcnC and lcnD) whose products together form a transport system dedicated to the translocation of lactococcin through the host membrane. The LcnC protein belongs to the family of ATP-binding cassette transporter proteins (40), and LcnD acts as an accessory protein (14). These two proteins have considerable homology to PedD and PedC, respectively (39), suggesting that the latter proteins play a similar role in the transport of active pediocin. The two bacteriocins also share the double glycine-processing site found in many lactic acid bacteria class II bacteriocins, some lantibiotics, and the Escherichia coli bacteriocin, colicin V (17).Van Belkum et al. (38) have recently investigated the role of leader sequences of the class II bacteriocins in the recognition of the precursor peptide by the dedicated translocation machinery of the host organism. By constructing hybrid genes, they demonstrated that the leader peptides of leucocin A, lactococcin A, and colicin V, which are cleaved at the Gly-Gly (positions −2 and −1) site, can direct the secretion of the nonrelated bacteriocin divergicin A. Our studies have focused on the class II bacteriocins pediocin PA-1 and lactococcin A. Since these peptides have a number of features in common, it might be expected that a pediocin PA-1 precursor could be secreted and processed by using the lactococcin A translocation machinery. L. lactis IL1403 is a plasmid-free strain that does not produce bacteriocin but contains chromosomal copies of genes analogous to lcnC and lcnD (33, 40). In addition, the natural resistance of this strain to pediocin PA-1 (8) makes it an ideal candidate for a production host to investigate the expression of pediocin PA-1 in lactococci.This paper describes the development of an expression system geared to the production of heterologous peptides in L. lactis. Testing the system with pediocin PA-1 involved the construction of a vector containing an in-frame fusion between sequences encoding the lactococcin A leader and the structural part of mature pediocin PA-1. The hybrid genes were introduced into L. lactis IL1403, and the ability of these strains to produce and secrete pediocin PA-1 was investigated.  相似文献   

12.
Nisin and pediocin PA-1 are examples of bacteriocins from lactic acid bacteria (LAB) that have found practical applications as food preservatives. Like other natural antimicrobial peptides, LAB bacteriocins act primarily at the cytoplasmic membranes of susceptible microorganisms. Studies with in vivo as well as in␣vitro membrane systems are directed toward understanding how bacteriocins interact with membranes so as to provide a mechanistic basis for their rational applications. The dissipation of proton motive force was identified early on as the common mechanism for the lethal activity of LAB bacteriocin. Models for nisin/membrane interactions propose that the peptide forms poration complexes in the membrane through a multi-step process of binding, insertion, and pore formation. This review focuses on the current knowledge of: (1) the mechanistic action of nisin and pediocin-like bacteriocins, (2) the requirement for a cell factor such as a membrane protein, (3) the influence of membrane potential, pH, and lipid composition on the of specificity and efficacy of bacteriocins, and (4) the roles of specific amino acids and structural domains of the bacteriocins in their action. Received: 3 April 1998 / Received last revision: 27 July 1998 / Accepted: 29 July 1998  相似文献   

13.
Curvaticin FS47, a bacteriocin produced by Lactobacillus curvatus FS47, is inhibitory to Listeria monocytogenes, as well as Lactobacillus, Pediococcus, Enterococcus, and Bacillus spp. The bacteriocin was purified by 40% ammonium sulfate precipitation, solid-phase extraction, and reversed-phase high-pressure liquid chromatography. Purified curvaticin FS47 was determined to be 4.07 kDa by mass spectrometry and was partially sequenced. Thirty-one N-terminal amino acids were identified; the curvaticin FS47 protein sequence did not show homology to the pediocin-like group of bacteriocins.  相似文献   

14.
Bacteriocin-producing starter cultures have been suggested as natural food preservatives; however, development of resistance in the target organism is a major concern. We investigated the development of resistance in Listeria monocytogenes to the two major bacteriocins pediocin PA-1 and nisin A, with a focus on the variations between strains and the influence of environmental conditions. While considerable strain-specific variations in the frequency of resistance development and associated fitness costs were observed, the influence of environmental stress seemed to be bacteriocin specific. Pediocin resistance frequencies were determined for 20 strains and were in most cases ca. 10−6. However, two strains with intermediate pediocin sensitivity had 100-fold-higher pediocin resistance frequencies. Nisin resistance frequencies (14 strains) were in the range of 10−7 to 10−2. Strains with intermediate nisin sensitivity were among those with the highest frequencies. Environmental stress in the form of low temperature (10°C), reduced pH (5.5), or the presence of NaCl (6.5%) did not influence the frequency of pediocin resistance development; in contrast, the nisin resistance frequency was considerably reduced (<5 × 10−8). Pediocin resistance in all spontaneous mutants was very stable, but the stability of nisin resistance varied. Pediocin-resistant mutants had fitness costs in the form of reduction down to 44% of the maximum specific growth rate of the wild-type strain. Nisin-resistant mutants had fewer and less-pronounced growth rate reductions. The fitness costs were not increased upon applying environmental stress (5°C, 6.5% NaCl, or pH 5.5), indicating that the bacteriocin-resistant mutants were not more stress sensitive than the wild-type strains. In a saveloy-type meat model at 5°C, however, the growth differences seemed to be negligible. The applicational perspectives of the results are discussed.  相似文献   

15.
Bacteriocins have been identified in many strains of lactic acid bacteria (LAB) which are a source of natural food preservatives and microbial inhibitors. Our objectives were to use a PCR array of primers to identify bacteriocin structural genes in Bac+ LAB. DNA sequence homology at the 5′- and 3′-ends of the various structural genes indicated that non-specific priming may allow PCR amplification of heterologous bacteriocin genes. Successful amplification was obtained by real-time PCR and confirmed by melting curve and agarose gel analysis. Sequence information specific to targeted bacteriocin structural genes from the intra-primer regions of amplimers was compared to sequences residing in GenBank. The bacteriocin PCR array allowed the successful amplification of bacteriocin structural genes from strains of Lactobacillus, Lactococcus, and Pediococcus including one whose amino acid sequence was unable to be determined by Edman degradation analysis. DNA sequence analysis identified as many as 3 bacteriocin structural genes within a given strain, identifying ten unique bacteriocin sequences that were previously uncharacterized (partial homology) and one that was 100% identical to sequences in GenBank. This study provides a rapid approach to sequence and identify bacteriocin structural genes among Bac+ LAB using a microplate bacteriocin PCR array.  相似文献   

16.
Production of bacteriocin activity designated pediocin PA-1 was associated with the presence of a 6.2-megadalton plasmid in Pediococcus acidilactici PAC1.0. The bacteriocin exhibited activity against P. acidilactici, P. pentosaceus, Lactobacillus plantarum, L. casei, L. bifermentans, and Leuconostoc mesenteroides subsp. dextranicum. Partial characterization of pediocin PA-1 is described. The molecular weight of pediocin PA-1 was ca. 16,500. Additionally, strain PAC1.0 was found to contain a 23-megadalton plasmid associated with sucrose-fermenting ability.  相似文献   

17.
Lactic acid bacteria (LAB) are known to produce various types of bacteriocins, ribosomally synthesized polypeptides, which have antibacterial spectrum against many food borne pathogens. Listeria monocytogenes, a pathogenic bacterium, is of particular concern to the food industry because of its ability to grow even at refrigeration temperatures and its tolerance to preservative agents. Some of the bacteriocins of LAB are known to have anti-listerial property. In the present study, the bacteriocin produced by vancomycin sensitive Enterococcus faecium El and J4 isolated from idli batter samples was characterized. The isolates were found to tolerate high temperatures of 60°C for 15 and 30 min and 70°C for 15 min. The bacteriocin was found to be heat stable and had anti-listerial activity. The bacteriocin did not lost anti-listerial activity when treated at 100°C for 30 min or at 121°C for 15 min. The bacteriocin lost its antimicrobial activity after treating with trypsin, protinase-K, protease and peptidase.  相似文献   

18.
A recombinant DNA, encoding the chimeric protein of the signal sequence for bifidobacterial α-amylase mature pediocin PA-1, was introduced into Bifidobacterium longum MG1. Biologically active pediocin PA-1 was successfully secreted from the strain and showed bactericidal activity against Listeria monocytogenes and the same molecular mass as native pediocin PA-1.  相似文献   

19.
Pediocin PA-1 is a member of the class IIa bacteriocins, which show antimicrobial effects against lactic acid bacteria. To develop an improved version of pediocin PA-1, reciprocal chimeras between pediocin PA-1 and enterocin A, another class IIa bacteriocin, were constructed. Chimera EP, which consisted of the C-terminal half of pediocin PA-1 fused to the N-terminal half of enterocin A, showed increased activity against a strain of Leuconostoc lactis isolated from a sour-spoiled dairy product. To develop an even more effective version of this chimera, a DNA-shuffling library was constructed, wherein four specific regions within the N-terminal half of pediocin PA-1 were shuffled with the corresponding sequences from 10 other class IIa bacteriocins. Activity screening indicated that 63 out of 280 shuffled mutants had antimicrobial activity. A colony overlay activity assay showed that one of the mutants (designated B1) produced a >7.8-mm growth inhibition circle on L. lactis, whereas the parent pediocin PA-1 did not produce any circle. Furthermore, the active shuffled mutants showed increased activity against various species of Lactobacillus, Pediococcus, and Carnobacterium. Sequence analysis revealed that the active mutants had novel N-terminal sequences; in active mutant B1, for example, the parental pediocin PA-1 sequence (KYYGNGVTCGKHSC) was changed to TKYYGNGVSCTKSGC. These new and improved DNA-shuffled bacteriocins could prove useful as food additives for inhibiting sour spoilage of dairy products.  相似文献   

20.
The aim of the present study was to ascertain the potency of anti-listerial bacteriocin produced by lactic acid bacteria (LAB) isolated from indigenous samples of dahi, dried fish, and salt-fermented cucumber. A total of 231 LAB isolates were obtained from the samples, of which 51 isolates displayed anti-listerial activity. The anti-listerial LAB were identified by PCR as Lactobacillus sp., Pediococcus sp., Enterococcus sp., and Lactococcus sp. PCR also enabled the detection of Class IIa bacteriocin-encoding genes such as enterocin A, pediocin, and plantaricin A in some of the LAB isolates. The culture filtrate from anti-listerial LAB isolates demonstrated bacteriocin-like inhibitory substance (BLIS) against common Gram-positive pathogenic bacteria such as Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus, and partial characterization of BLIS confirmed the production of bacteriocin by the LAB isolates. Sensitive fluorescence-based assays employing specific probes indicated the comparative potencies of the bacteriocin and clearly revealed the membrane-targeted anti-listerial activity of the purified bacteriocin produced by selected LAB isolates. The food application potential of plantaricin A produced by a native isolate Lactobacillus plantarum CRA52 was evidenced as the bacteriocin suppressed the growth of Listeria monocytogenes Scott A inoculated in paneer samples that were stored at 8?°C for 5?days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号