首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase B (PKB/AKT) has been identified as a promising cancer drug target downstream of PI3 kinase. To find novel inhibitors of PKB/AKT kinase activity for progression as anticancer agents, the authors have used a high-throughput screen based on AlphaScreentrade mark technology. A known kinase inhibitor, the isoquinoline H8, was used as a positive control with mean inhibition in the screen of 43.4% +/- 13.1%. The performance of the screen was highly acceptable with Z' and Z factors of 0.83 +/- 0.07 and 0.75 +/- 0.04, respectively. A number of confirmed hits ( approximately 0.1% hit rate) were identified from 63,500 compounds screened. Five compounds have previously been described as PKB inhibitors, demonstrating the ability of the assay to find authentic inhibitors of the enzyme. Five hits had the potential to interfere with the assay signal and were deemed to be false positives. Two compounds were nonspecific inhibitors of PKB as enzyme inhibition in a filter-based assay was markedly reduced in the presence of 0.01% Triton X100. The authors now include an interference assay during hit confirmation procedures and check compound activity in the presence of Triton X100 in an attempt to eliminate nonspecific aggregators at an early stage.  相似文献   

2.
3.
A direct and convenient spectrophotometric assay has been developed for methionine aminopeptidases (MetAPs). The method employs the hydrolysis of a substrate that is a methionyl analogue of p-nitroaniline (L-Met-p-NA), which releases the chromogenic product p-nitroaniline. This chromogenic product can be monitored continuously using a UV-Vis spectrophotometer set at 405 nm. The assay was tested with the type I MetAP from Escherichia coli (EcMetAP-I) and the type II MetAP from Pyrococcus furiosus (PfMetAP-II). Using L-Met-p-NA, the kinetic constants k(cat) and K(m) were determined for EcMetAP-I and PfMetAP-II and were compared with those obtained with a "standard" high-performance liquid chromatography (HPLC) discontinuous assay. The assay has also been used to determine the temperature dependence of the kinetic constant k(cat) for PfMetAP-II as well as to screen two novel pseudopeptide inhibitors of MetAPs. The results demonstrate that L-Met-p-NA provides a fast, convenient, and effective substrate for both type I and type II MetAPs and that this substrate can be used to quickly screen inhibitors of MetAPs.  相似文献   

4.
Assays for two enzymes from Escherichia coli were developed and validated as antibacterial inhibitor screens. The MraY and MurG enzymes were overexpressed and purified as the membrane fraction or to homogeneity, respectively. The MurG enzyme was expressed with a six-histidine tag using an optimized minimal-medium protocol for subsequent purification. Although traditional assays were established, the enzymes were also assayed via a 96-well membrane plate assay and a 384-well scintillation proximity-based assay developed herein. These assays afford a more economical and high-throughput evaluation of inhibitors. A mureidomycin inhibitor mix was used as a control for the assay development and screen validation. Several inhibitors resulting from a high-throughput screen were found and evaluated for potential therapeutic use.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) protease (PR) plays an essential role in processing viral polyproteins into mature proteins. As a result, it is a major target for the development of drugs against AIDS. However, due to the rapid emergence of drug-resistant HIV, the development of novel HIV PR inhibitors is urgently needed. We recently established a new cell line E-PR293 which can be used as a safe, convenient and highly efficient assay system to screen HIV-1 PR inhibitors. In the cells, the HIV-1 PR is expressed in a chimeric protein with the green fluorescence protein (GFP). This assay measures the PR activity as a function of either the fluorescence of GFP or the cytotoxic activity of HIV-1 PR which is expressed in the cell. E-PR293 cells were maintained in the presence of doxycycline, which suppresses the expression of HIV-1 PR. The removal of doxycycline induces the expression of HIV-1 PR, which is used to screen HIV-1 PR inhibitors. In E-PR293 cells, the 50% inhibitory concentration of the cytotoxic effects by nelfinavir and saquinavir were as low as nanomolar levels, almost equal to those found in the HIV-infection assay.  相似文献   

6.
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone required for the stability and function of a number of client proteins, many of which are involved in cancer development. The natural products geldanamycin (GM) and radicicol (RD) are known inhibitors of Hsp90, and their derivatives are being developed for the treatment of various cancers. To identify novel Hsp90 inhibitors, a highly robust time-resolved fluorescence resonance energy transfer (TR-FRET)-based HTS assay that measures the binding of biotinylated geldanamycin (biotin-GM) to the His-tagged human Hsp90 N-terminal ATP-binding domain (Hsp90N) was developed. This assay was optimized in 1536-well plates and was used as the primary assay to screen 10(6) compounds. Identified "hits" were then confirmed in a scintillation proximity assay (SPA) and a DEAE membrane-based assay for [(3)H]AAG binding to Hsp90. In addition, a surface plasmon resonance (SPR) assay that measures the direct interaction of Hsp90 with its inhibitors was developed and used to further characterize the identified inhibitors. Several potent and reversible inhibitors of human Hsp90 with K(d) values measured in the high nanomolar range were identified.  相似文献   

7.
Identifying potent enzyme inhibitors through a robust HTS assay is currently thought to be the most efficient way of searching for lead molecules. We have developed a HTS assay that mimics a crucial step in an essential metabolic pathway, the purine salvage pathway of the malarial parasite Plasmodium falciparum. In this assay we have used purified recombinant enzymes: hypoxanthine guanine phosphoribosyl transferase (HGPRT) and inosine monophosphate dehydrogenase (IMPDH) from the malarial parasite and the human host, respectively. These two enzymes, which work in tandem, are used to set up a coupled assay that is robust enough to meet the stringent criteria of an HTS assay. In the first phase of our screen we seem to have identified novel inhibitors that kill the parasite by inhibiting the salvage pathway of the parasite.  相似文献   

8.
Aldose reductase (AR) inhibitors are used clinically to treat long-term diabetic complications. Previous studies reported a series of AR inhibitory candidates, but unfortunately the mode of inhibition was poorly described due mainly to the lack of readily available methods for evaluating the specificity. The present study examined the AR inhibitory effects of novel synthetic hydantoins and their structural relatives, some of which were obtained from chemically engineered extracts of natural plants, and discovered several novel AR inhibitors with moderate inhibitory activity. The identified inhibitors were then subjected to a two-step mechanistic characterization using a detergent-addition assay and our novel dimethyl sulfoxide (DMSO)-perturbation assay. The detergent-addition assay revealed aggregation-based inhibitors, and the subsequent DMSO-perturbation assay identified nonspecific binding inhibitors. Thus, the present study demonstrates the usefulness of the DMSO-perturbation screen for identifying nonspecific binding characteristics of AR inhibitors.  相似文献   

9.
The authors conducted a high-throughput screening campaign for inhibitors of SV40 large T antigen ATPase activity to identify candidate antivirals that target the replication of polyomaviruses. The primary assay was adapted to 1536-well microplates and used to screen the National Institutes of Health Molecular Libraries Probe Centers Network library of 306 015 compounds. The primary screen had an Z value of ~0.68, signal/background = 3, and a high (5%) DMSO tolerance. Two counterscreens and two secondary assays were used to prioritize hits by EC(50), cytotoxicity, target specificity, and off-target effects. Hits that inhibited ATPase activity by >44% in the primary screen were tested in dose-response efficacy and eukaryotic cytotoxicity assays. After evaluation of hit cytotoxicity, drug likeness, promiscuity, and target specificity, three compounds were chosen for chemical optimization. Chemical optimization identified a class of bisphenols as the most effective biochemical inhibitors. Bisphenol A inhibited SV40 large T antigen ATPase activity with an IC(50) of 41 μM in the primary assay and 6.2 μM in a cytoprotection assay. This compound class is suitable as probes for biochemical investigation of large T antigen ATPase activity, but because of their cytotoxicity, further optimization is necessary for their use in studying polyomavirus replication in vivo.  相似文献   

10.
The lack of lead compounds that specifically recognize and manipulate the function of RNA molecules limits our ability to consider RNA targets valid for drug discovery. Herein is reported a high-throughput biochemical screen for inhibitors of RNA-protein interactions based on AlphaScreen technology that incorporates several layers of specificity measurements into the primary screen. This screen was used to analyze approximately 5500 compounds from a collection of bioactive small molecules to detect inhibitors of the HIV-1 Rev-RRE and BIV Tat-TAR interactions. This proof-of-concept screen validates the assay as one that accurately identifies hit molecules and determines the selectivity of those hits.  相似文献   

11.
Syk is a tyrosine kinase which is indispensable in immunoglobulin Fc receptor- and B cell receptor-mediated signal transduction in various immune cells. This pathway is important in the pathophysiology of allergy. In this study we established a quantitative nonradioactive kinase assay to identify inhibitors of Syk. We used recombinant GST-tagged Syk purified from baculovirus-infected insect cells. As a substrate, biotinylated peptide corresponding to the activation loop domain of Syk, whose tyrosine residues are autophosphorylated upon activation, was employed to screen both ATP- and substrate-competitive inhibitors. After the kinase reaction in solution phase, substrate was trapped on a streptavidin-coated plate, followed by detection of the phosphorylated tyrosine with europium-labeled anti-phosphotyrosine antibody. The kinase reaction in solution phase greatly enhanced phosphorylation of substrate compared to that of plate-coated substrate. High signal-to-background ratio and low data scattering were obtained in the optimized high-throughput screening (HTS) format. Further, several kinase inhibitors showed concentration-dependent inhibition of recombinant Syk kinase activity with almost the same efficacy for immunoprecipitated Syk from a human cell line. These data suggest that this assay is useful to screen Syk kinase inhibitors in HTS.  相似文献   

12.
The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.  相似文献   

13.
Nicotinamide adenine dinucleotide synthetase (NadE) is an essential enzyme for bacterial pathogens and is thus a promising antibacterial target. It catalyzes the conversion of nicotinic acid adenine dinucleotide to nicotinamide adenine dinucleotide. Changes in chemical shifts that occur in the nicotinic acid ring as it is converted to nicotinamide can be used for monitoring the reaction. A robust nuclear magnetic resonance-based activity assay was developed using robotically controlled reaction initiation and quenching. The single-enzyme assay has less potential for false positives compared to a coupled activity assay and is especially well suited to the high concentration of compounds in fragment screens. The assay has been used to screen fragment libraries for NadE inhibitors.  相似文献   

14.
The class 1 ribonuclease III (RNase III) encoded by Sweet potato chlorotic stunt virus (CSR3) suppresses RNA silencing in plant cells and thereby counters the host antiviral response by cleaving host small interfering RNAs, which are indispensable components of the plant RNA interference (RNAi) pathway. The synergy between sweet potato chlorotic stunt virus and sweet potato feathery mottle virus can reduce crop yields by 90%. Inhibitors of CSR3 might prove efficacious to counter this viral threat, yet no screen has been carried out to identify such inhibitors. Here, we report a novel high-throughput screening (HTS) assay based on fluorescence resonance energy transfer (FRET) for identifying inhibitors of CSR3. For monitoring CSR3 activity via HTS, we used a small interfering RNA substrate that was labelled with a FRET-compatible dye. The optimized HTS assay yielded 109 potential inhibitors of CSR3 out of 6,620 compounds tested from different small-molecule libraries. The three best inhibitor candidates were validated with a dose–response assay. In addition, a parallel screen of the selected candidates was carried out for a similar class 1 RNase III enzyme from Escherichia coli (EcR3), and this screen yielded a different set of inhibitors. Thus, our results show that the CSR3 and EcR3 enzymes were inhibited by distinct types of molecules, indicating that this HTS assay could be widely applied in drug discovery of class 1 RNase III enzymes.  相似文献   

15.
16.
The molecular chaperone heat-shock protein 90 (HSP90) plays a key role in the cell by stabilizing a number of client proteins, many of which are oncogenic. The intrinsic ATPase activity of HSP90 is essential to this activity. HSP90 is a new cancer drug target as inhibition results in simultaneous disruption of several key signaling pathways, leading to a combinatorial approach to the treatment of malignancy. Inhibitors of HSP90 ATPase activity including the benzoquinone ansamycins, geldanamycin and 17-allylamino-17-demethoxygeldanamycin, and radicicol have been described. A high-throughput screen has been developed to identify small-molecule inhibitors that could be developed as therapeutic agents with improved pharmacological properties. A colorimetric assay for inorganic phosphate, based on the formation of a phosphomolybdate complex and subsequent reaction with malachite green, was used to measure the ATPase activity of yeast HSP90. The Km for ATP determined in the assay was 510+/-70 microM. The known HSP90 inhibitors geldanamycin and radicicol gave IC(50) values of 4.8 and 0.9 microM respectively, which compare with values found using the conventional coupled-enzyme assay. The assay was robust and reproducible (2-8% CV) and used to screen a compound collection of approximately 56,000 compounds in 384-well format with Z' factors between 0.6 and 0.8.  相似文献   

17.
The use of small molecule inhibitors of cellular processes is a powerful approach to understanding gene function that complements the genetic approach. We have designed a high throughput screen to identify new inhibitors of eukaryotic protein synthesis. We used a bicistronic mRNA reporter to multiplex our assay and simultaneously screen for inhibitors of cap-dependent initiation, internal initiation and translation elongation/termination. Functional screening of >90 000 compounds in an in vitro translation reaction identified 36 inhibitors, 14 of which are known inhibitors of translation and 18 of which are nucleic acid-binding ligands. Our results indicate that intercalators constitute a large class of protein synthesis inhibitors. Four non-intercalating compounds were identified, three of which block elongation and one of which inhibits initiation. The novel inhibitor of initiation affects 5' end-mediated initiation, as well as translation initiated from picornaviral IRESs, but does not significantly affect internal initiation from the hepatitis C virus 5'-untranslated region. This compound should be useful for delineating differences in mechanism of initiation among IRESs.  相似文献   

18.
19.
Results of a complete survey of the more than 2-million-member Pharmacopeia compound collection in a 1536-well microvolume screening assay format are reported. A complete technology platform, enabling the performance of ultra-high throughput screening in a miniaturized 1536-well assay format, has been assembled and utilized. The platform consists of tools for performing microvolume assays, including assay plates, liquid handlers, optical imagers, and data management software. A fluorogenic screening assay for inhibition of a protease enzyme target was designed and developed using this platform. The assay was used to perform a survey screen of the Pharmacopeia compound collection for active inhibitors of the target enzyme. The results from the survey demonstrate the successful implementation of the ultra-high throughout platform for routine screening purposes. Performance of the assay in the miniaturized format is equivalent to that of a standard 96-well assay, showing the same dependence on kinetic parameters and ability to measure enzyme inhibition. The survey screen identified an active class of compounds within the Pharmacopeia compound collection. These results were confirmed using a standard 96-well assay.  相似文献   

20.
As a member of the Wee-kinase family protein kinase PKMYT1 is involved in G2/M checkpoint regulation of the cell cycle. Recently, a peptide microarray approach led to the identification of a small peptide; EFS247–259 as substrate of PKMYT1, which allowed for subsequent development of an activity assay. The developed activity assay was used to characterize the PKMYT1 catalyzed phosphorylation of EFS247–259. For the first time kinetic parameters for PKMYT1, namely Km, Km, ATP and vmax were determined. The optimized assay was used to screen the published protein kinase inhibitor sets (PKIS I and II), two sets of small molecule ATP-competitive kinase inhibitors reported by GlaxoSmithKline. We identified ten inhibitors, providing different scaffolds. The inhibitors were further characterized by using binding assay, activity and functional assay. In addition, docking studies were carried out in order to rationalize the observed biological activities. The derived results provide the basis for further chemical optimization of PKMYT1 inhibitors and for further analysis of PKMYT1 as target for anti-cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号