首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae in comparison with that of the lactose permease (LacY) from Escherichia coli. Both proteins catalyze active transport of lactose or melibiose with comparable affinity and capacity. However, MelY does not transport the analogue methyl-1-thio-β,d-galactopyranoside (TMG), which is a very efficient substrate in LacY. We show that MelY binds TMG and conserves Cys148 (helix V) as a TMG binding residue but fails to transport this ligand. Based on homology modeling, organization of the putative MelY sugar binding site is the same as that in LacY and residues irreplaceable for the symport mechanism are conserved. Moreover, only 15% of the residues where a single-Cys mutant is inactivated by site-directed alkylation differ in MelY. Using site-directed mutagenesis at these positions and engineered cross-homolog chimeras, we show that Val367, at the periplasmic end of transmembrane helix XI, contributes in defining the substrate selectivity profile. Replacement of Val367 with the MelY residue (Ala) leads to impairment of TMG uptake. Exchanging domains N6 and C6 between LacY and MelY also leads to impairment of TMG uptake. TMG uptake activity is restored by the re-introduction of a Val367 in the background of chimera N6(LacY)-C6(MelY). Much less prominent effects are found with the same mutants and chimeras for the transport of lactose or melibiose.  相似文献   

2.
3.
The lac operon of Escherichia coli can exhibit bistability. Early studies showed that bistability occurs during growth on TMG/succinate and lactose + glucose, but not during growth on lactose. More recently, studies with lacGFP-transfected cells show bistability during growth on TMG/succinate, but not during growth on lactose and lactose + glucose. In the literature, these results are invariably attributed to variations in the destabilizing effect of the positive feedback generated by induction. Specifically, during growth on TMG/succinate, lac induction generates strong positive feedback because the permease stimulates the accumulation of intracellular TMG, which in turn, promotes the synthesis of even more permease. This positive feedback is attenuated during growth on lactose because hydrolysis of intracellular lactose by β-galactosidase suppresses the stimulatory effect of the permease. It is attenuated even more during growth on lactose + glucose because glucose inhibits the uptake of lactose. But it is clear that the stabilizing effect of dilution also changes dramatically as a function of the medium composition. For instance, during growth on TMG/succinate, the dilution rate of lac permease is proportional to its activity, e, because the specific growth rate is independent of e (it is completely determined by the concentration of succinate). However, during growth on lactose, the dilution rate of the permease is proportional to e 2 because the specific growth rate is proportional to the specific lactose uptake rate, which in turn, proportional to e. We show that: (a) This dependence on e 2 creates such a strong stabilizing effect that bistability is virtually impossible during growth on lactose, even in the face of the intense positive feedback generated by induction. (b) This stabilizing effect is weakened during growth on lactose + glucose because the specific growth rate on glucose is independent of e, so that the dilution rate once again contains a term that is proportional to e. These results imply that the lac operon is much more prone to bistability if the medium contains carbon sources that cannot be metabolized by the lac enzymes, e.g., succinate during growth on TMG/succinate and glucose during growth on lactose + glucose. We discuss the experimental data in the light of these results.  相似文献   

4.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

5.
Novick &; Weiner (1957) proposed a model in which induction of the lac operon with suboptimal concentrations of inducer generates a population containing both uninduced and fully induced cells. The latter arise as cells acquire the galactoside transport system, thus initiating an autocatalytic cycle of induction since this permease can transport an inducer for its own synthesis. Evidence in favor of this model has been obtained from direct measurements of the enzyme content of individual cells, using a fluorogenic assay sensitive to one molecule of β-d-galactosidase. Fully induced cells, at the predicted frequency, were found in suboptimally induced populations of wild type strains, and of a strain lacking thiogalactoside transacetylase, but not of a strain lacking galactoside permease. In the wild type, the frequency of cells with an enzyme content intermediate between uninduced and fully induced levels was greater than the frequency predicted for cells within the autocatalytic cycle of induction. According to the model, then, in some of these cells, induction of β-d-galactosidase has occurred without formation of the permease necessary to initiate accumulation of inducer.  相似文献   

6.
The role of the Escherichia coli lacY gene product (the lactose permease) in the induction of isopropyl-β-D-thiogalactopyranoside (IPTG) inducible promoters was studied in E. coli and P. fluorescens. This was done by comparing strains containing a lacIPOZYA chromosomal insert with newly constructed strains containing inserts without the lacY gene (lacIPOZ). The lactose operon inserts were introduced as single-copy chromosomal inserts to eliminate differences in expression caused by differences in copy number. Comparison between the two types of inserts showed that the lactose permease was essential to allow growth on lactose by both bacteria and that the lactose permease plays an important role in transporting the inducer IPTG across the membrane of P. fluorescens. The use of a functional lactose permease allows expression of β-galactosidase to increase more than fivefold from a wild-type lac promoter in P. fluorescens SS1001. We suggest that an increase in the rate of protein synthesis from lac-type promoters could be enhanced if an active lactose permease is present as well. Received: 29 October 1997 / Accepted: 8 December 1997  相似文献   

7.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

8.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

9.
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within ∼ 4.2 Å of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.  相似文献   

10.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

11.
Previous N-ethylmaleimide-labeling studies show that ligand binding increases the reactivity of single-Cys mutants located predominantly on the periplasmic side of LacY and decreases reactivity of mutants located for the most part of the cytoplasmic side. Thus, sugar binding appears to induce opening of a periplasmic pathway with closing of the cytoplasmic cavity resulting in alternative access of the sugar-binding site to either side of the membrane. Here we describe the use of a fluorescent alkylating reagent that reproduces the previous observations with respect to sugar binding. We then show that generation of an H+ electrochemical gradient (Δμ¯H+, interior negative) increases the reactivity of single-Cys mutants on the periplasmic side of the sugar-binding site and in the putative hydrophilic pathway. The results suggest that Δμ¯H+, like sugar, acts to increase the probability of opening on the periplasmic side of LacY.  相似文献   

12.
A new stereoselective preparation of N-aceyl-d-galactosamine (1b) starting from the known p-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-β-d-galactopyranoside (10) is described using a simple strategy based on (a) epimerization at C-2 of 10 via oxidation-reduction to give the talo derivative 11, (b) amination with configurational inversion at C-2 of 11 via a SN2-type reaction on its 2-imidazylate, (c) anomeric deprotection of the p-methoxyphenyl β-d-galactosamine glycoside 14, (d) complete deprotection. Applying the same protocol to 2,3:5,6:3′,4′-tri-O-isopropylidene-6′-O-(1-methoxy-1-methylethyl)-lactose dimethyl acetal (4), directly obtained through acetonation of lactose, the disaccharide β-d-GalNAcp-(1→4)-d-Glcp (1a) was obtained with complete stereoselectivity in good (40%) overall yield from lactose.  相似文献   

13.
Lactose permease in Escherichia coli (LacY) transports both anomeric states of disaccharides but has greater affinity for α-sugars. Molecular dynamics (MD) simulations are used to probe the protein-sugar interactions, binding structures, and global protein motions in response to sugar binding by investigating LacY (the experimental mutant and wild-type) embedded in a fully hydrated lipid bilayer. A total of 12 MD simulations of 20-25 ns each with β(α)-d-galactopyranosyl-(1,1)-β-d-galactopyranoside (ββ-(Galp)2) and αβ-(Galp)2 result in binding conformational families that depend on the anomeric state of the sugar. Both sugars strongly interact with Glu126 and αβ-(Galp)2 has a greater affinity to this residue. Binding conformations are also seen that involve protein residues not observed in the crystal structure, as well as those involved in the proton translocation (Phe118, Asn119, Asn240, His322, Glu325, and Tyr350). Common to nearly all protein-sugar structures, water acts as a hydrogen bond bridge between the disaccharide and protein. The average binding energy is more attractive for αβ-(Galp)2 than ββ-(Galp)2, i.e. −10.7(±0.7) and −3.1(±1.0) kcal/mol, respectively. Of the 12 helices in LacY, helix-IV is the least stable with ββ-(Galp)2 binding resulting in larger distortion than αβ-(Galp)2.  相似文献   

14.
A new β-glucosidase gene (bglSp) was cloned from the ginsenoside converting Sphingomonas sp. strain 2F2 isolated from the ginseng cultivating filed. The bglSp consisted of 1344 bp (447 amino acid residues) with a predicted molecular mass of 49,399 Da. A BLAST search using the bglSp sequence revealed significant homology to that of glycoside hydrolase superfamily 1. This enzyme was overexpressed in Escherichia coli BL21 (DE3) using a pET21-MBP (TEV) vector system. Overexpressed recombinant enzymes which could convert the ginsenosides Rb1, Rb2, Rc and Rd to the more pharmacological active rare ginsenosides gypenoside XVII, ginsenoside C-O, ginsenoside C-Mc1 and ginsenoside F2, respectively, were purified by two steps with Amylose-affinity and DEAE-Cellulose chromatography and characterized. The kinetic parameters for β-glucosidase showed the apparent Km and Vmax values of 2.9 ± 0.3 mM and 515.4 ± 38.3 μmol min−1 mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside. The enzyme could hydrolyze the outer C3 glucose moieties of ginsenosides Rb1, Rb2, Rc and Rd into the rare ginsenosides Gyp XVII, C-O, C-Mc1 and F2 quickly at optimal conditions of pH 5.0 and 37 °C. A little ginsenoside F2 production from ginsenosides Gyp XVII, C-O, and C-Mc1 was observed for the lengthy enzyme reaction caused by the side ability of the enzyme.  相似文献   

15.
《Biophysical journal》2022,121(5):808-819
The expression of the lac operon of E. coli is subject to positive feedback during growth in the presence of gratuitous inducers, but its existence in the presence of lactose remains controversial. The key question in this debate is: Do the lactose enzymes, Lac permease and β-galactosidase, promote accumulation of allolactose? If so, positive feedback exists since allolactose does stimulate synthesis of the lactose enzymes. Here, we addressed the above question by developing methods for determining the intracellular allolactose concentration as well as the kinetics of enzyme induction and dilution. We show that, during lac induction in the presence of lactose, the intracellular allolactose concentration increases with the lactose enzyme level, which implies that lactose enzymes promote allolactose accumulation, and positive feedback exists. We also show that, during lac repression in the presence of lactose + glucose, the intracellular allolactose concentration decreases with the lactose enzyme levels, which suggests that, under these conditions, the positive feedback loop turns in the reverse direction. The induction and dilution rates derived from the transient data show that the positive feedback loop is reversed due to a radical shift of the steady-state induction level. This is formally identical to the mechanism driving catabolite repression in the presence of TMG + glucose.  相似文献   

16.
The reactivity of N-(2-aminophenyl)-d-glycero-d-gulo-heptonamide (adgha), with the group 12 cations, Zn(II), Cd(II), and Hg(II), was studied in DMSO-d6 solution. The studied system showed a selective coordination to Hg(II), and the products formed were characterized by 1H and 13C NMR in DMSO-d6 solution and fast atom bombardment (FAB+) mass spectra. The expected coordination compounds, [Hg(adgha)](NO3)2 and [Hg(adgha)2](NO3)2, were observed as unstable intermediates that decompose to bis-[2-(d-glycero-d-gulo-hexahydroxyhexyl)-benzimidazole-κN]mercury(II) dinitrate, [Hg(ghbz)2](NO3)2. The chemical transformation of the complexes was followed by NMR experiments, and the nature of the species formed is sustained by a theoretical study done using DFT methodology. From this study, we propose the structure of the complexes formed in solution, the relative stability of the species formed, and the possible role of the solvent in the observed transformations.  相似文献   

17.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-β-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

18.
As a constituent of polysaccharides and glycoconjugates, β-d-galactofuranose (Galf) exists in several pathogenic microorganisms. Although we recently identified a β-d-galactofuranosidase (Galf-ase) gene, ORF1110, in the Streptomyces strain JHA19, very little is known about the Galf-ase gene. Here, we characterized a strain, named JHA26, in the culture supernatant of which exhibited Galf-ase activity for 4-nitrophenyl β-d-galactofuranoside (pNP-β-d-Galf) as a substrate. Draft genome sequencing of the JHA26 strain revealed a putative gene, termed ORF0643, that encodes Galf-ase containing a PA14 domain, which is thought to function in substrate recognition. The recombinant protein expressed in Escherichia coli showed the Galf-specific Galf-ase activity and also released galactose residue of the polysaccharide galactomannan prepared from Aspergillus fumigatus, suggesting that this enzyme is an exo-type Galf-ase. BLAST searches using the amino acid sequences of ORF0643 and ORF1110 Galf-ases revealed two types of Galf-ases in Actinobacteria, suggesting that Galf-specific Galf-ases may exhibit discrete substrate specificities.  相似文献   

19.
20.
Bacillus coagulans RCS3 isolated from hot water springs secreted five isozymes i.e. β-gal I-V of β-galactosidase. β-gal III isozyme was purified using DEAE cellulose and Sephadex G 100 column chromatography. Its molecular weight characterization showed a single band at 315 kD in Native PAGE, while two subunits of 50.1 and 53.7 kD in SDS PAGE. β-Gal III had pH optima in the range of 6-7 and temperature optima at 65 °C. It preferred nitro-aryl-β-d-galactoside as substrate having Km of 4.16 mM with ONPG. More than 85% and 80% hydrolysis of lactose (1-5%, w/v) was recorded within 48 h of incubation at 55 °C and 50 °C respectively and pH range of 6-7. About 78-86% hydrolysis of lactose in various brands of standardized milk was recorded at incubation temperature of 50 °C. These results marked the applications of β-gal III in processing of milk/whey industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号