首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and crystal structure of two coordination polymers of composition [MnII(H2bpbn)1.5][ClO4]2 · 2MeOH · 2H2O (1) and [CoII(H2bpbn)(H2O)2]Cl2 · H2O (2) [H2bpbn = N,N′-bis(2-pyridinecarboxamido)-1,4-butane], formed from the reaction between [Mn(H2O)6][ClO4]2/CoCl2 · 4H2O with H2bpbn in MeCN, are described. In 1 each MnII ion is surrounded by three pyridine amide units, providing three pyridine nitrogen and three amide oxygen donors. Each MnII center in 1 has distorted MnN3O3 coordination. In 2 each CoII ion is coordinated by two pyridine amide moieties in the equatorial plane and two water molecules provide coordination in the axial positions. Thus, the metal center in 2 has trans-octahedral geometry. In both 1 and 2, the existence of 1D zigzag network structure has been revealed. Owing to π-π stacking of pyridine rings from adjacent layers 1 forms 2D network; 2 forms 2D and 3D network assemblies via N-H?Cl and O-H?Cl secondary interactions. Both the metal centers are high-spin.  相似文献   

2.
Five MnII-sdba coordination polymers with mono-, di-, tri-, tetra-nuclear cores based on the V-shaped 4,4′-dicarboxybiphenyl sulfone (H2sdba) ligands: [Mn(sdba)(phen)2(H2O)]n·3nH2O (1), [Mn2(sdba)2(μ-H2O)(py)4]n (2), [Mn3(sdba)2(Hsdba)2(2,2′-bipy)2]n (3), [Mn4(sdba)4(4-mepy)2(H2O)4]n·2nH2O (4) and [Mn4(sdba)4(bpp)4(μ-H2O)2]n·0.5nH2O (5) (phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine, 4-mepy = 4-picoline, bpp = 1,3-bi(pyridine-4-yl)propane) were hydrothermally synthesized and structurally characterized. The M-O-C metal clusters in above complexes act as SBUs, and the V-shaped sdba ligands link the SBUs to generate the novel frameworks. In complexes 1 and 3 their 1D chains are linked into the 2D planes through various hydrogen bonding. Complex 2 displays the 3D structure with interpenetrated threefold, while complexes 4 and 5 both exhibit the 3D structures with the tetra-nuclear Mn4 units. The magnetic susceptibility studies in the 2-300 K range for these complexes reveal the existence of anti-ferromagnetic exchange interactions between the MnII ions.  相似文献   

3.
Three new coordination compounds with 4-sulfophthalic acid (H3SPA) ligand, namely {[Pb3(4-SPA)2(H2O)](H2O)}n (1), [Mn(4,4′-bpy)2(H2O)4][Mn2(4-SPA)2-(4,4′-bpy)4(H2O)4]·7.5(H2O) (2) and Cu2(4-HSPA)2(2,2′-bpy)2(H2O)2 (3) (4,4′-bpy = 4,4′-bipyridine and 2,2′-bpy = 2,2′-bipyridine), have been synthesized. The structures exhibit different dimensionality depending on the nature of the metal ions and/or the ancillary ligands. Compound 1 has a 2D layered architecture constructed from one-dimensional inorganic lead(II) oxygen chains containing tetranuclear [Pb42-O)4] cluster. Compound 2 has a dinuclear manganese [Mn2(4-SPA)2(4,4′-bpy)4(H2O)4] motif charged with mononuclear [Mn(4,4′-bpy)2(H2O)4]2+ cation. Compound 3 is a discrete dinuclear copper(II) structure that linked by extensive hydrogen bonds to form a three-dimensional supramolecular structure. In the solid state, compound 1 exhibits blue photoluminescence with the maximum at 432 nm upon excitation at 350 nm. The temperature-dependent magnetic susceptibility data of 2 have been investigated. The Curie constant C and Weiss constant θ are 3.14 emu K mol−1 and −2.09 K, respectively, revealing antiferromagnetically magnetic interactions between the Mn2+ ions. In addition, these compounds are characterized by powder X-ray diffraction, IR, elemental analysis, and thermogravimetric analysis.  相似文献   

4.
To complete the elucidation of the electrochemical properties of MnII-bis(terpyridine) complexes in CH3CN and evaluate the influence of the bulkiness of the terpy substituents, the oxidation processes of [MnII(L)2]2+ (L = terpy for 2,2′:6′,2″-terpyridine, pTol-terpy for 4′-(4-methylphenyl)-2,2′:6′,2″-terpyridine and tBu3-terpy for 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine) have been investigated in aqueous (1 M) CH3CN solution. In this medium, exhaustive oxidations at 1.10-1.20 V versus Ag/Ag+ release two electrons per molecule of initial complex and lead to clean dimerization processes with the quantitative formation of the oxo-bridged binuclear [Mn2IVO2(L)2(H2O)2]4+ complex for L = tBu3-terpy and of the tetranuclear [Mn4IVO5(L)4(H2O)2]6+ complexes for L = terpy and pTol-terpy. The formation of the tetranuclear complex with the tBu3-terpy derivative is prevented by the steric hindrance induced by the bulkiness of the tert-butyl groups, as confirmed by molecular mechanics calculations, as well as by their strong electron-donating properties. All these electrogenerated multinuclear complexes have been fully characterized in solution by UV-vis and electron paramagnetic resonance (EPR) spectroscopy. A markedly improved chemical synthesis of [Mn4IVO5(terpy)4(H2O)2]6+ is also reported.  相似文献   

5.
Aminocarboxylate complexes of vanadium(III) are of interest as models for biologically and medicinally relevant forms of this interesting and somewhat neglected ion. The V(III) ion is paramagnetic, but not readily suited to conventional EPR, due to its integer-spin ground state (S = 1) and associated large zero-field splitting (zfs). High-frequency and -field EPR (HFEPR), however, has the ability to study such systems effectively. Three complexes, all previously structurally characterized: Na[V(trdta)] · 3H2O, Na[V(edta)(H2O)] · 3H2O, and [V(nta)(H2O)3] · 4H2O (where trdta stands for trimethylenediamine-N,N,N′,N′-tetraacetate and nta stands for nitrilotriacetate) were studied by HFEPR. All the investigated complexes produced HFEPR responses both in the solid state, and in aqueous solution, but those of [V(nta)(H2O)3] · 4H2O were poorly interpretable. Analysis of multi-frequency HFEPR spectra yielded a set of spin Hamiltonian parameters (including axial and rhombic zfs parameters: D and E, respectively) for these first two complexes as solids: Na[V(trdta)] · 3H2O: D = 5.60 cm−1, E = 0.85 cm−1, g = 1.95; Na[V(edta)(H2O)] · 3H2O: D = 1.4 cm−1, E = 0.14 cm−1, g = 1.97. Spectra in frozen solution yielded similar parameters and showed multiple species in the case of the trdta complex, which are the consequence of the flexibility of this ligand. The EPR spectra obtained in frozen aqueous solution are the first, to our knowledge, of V(III) in solution in general and show the applicability of HFEPR to these systems. In combination with very insightful previous studies of the electronic absorption of these complexes which provided ligand-field parameters, it has been possible to describe the electronic structure of V(III) in [V(trdta)] and [V(edta)(H2O)]; the quality of data for [V(nta)(H2O)3] does not permit analysis. Qualitatively, six-coordinate V(III) complexes with O,N donor atoms show no electronic absorption band in the NIR region, and exhibit relatively large magnitude zfs (D ? 5 cm−1), while analogous seven-coordinate complexes do have a NIR absorption band and show relatively small magnitude zfs (D < 2 cm−1).  相似文献   

6.
α-Crystallin, one of the main constituent proteins in the crystalline lens, is an important molecular chaperone both within and outside the lens. Presently, the structural relationship between α-crystallin and its target proteins during chaperone action is poorly understood. It has been hypothesised that target proteins bind within a central cavity. Small-angle neutron-scattering (SANS) experiments in conjunction with isotopic substitution were undertaken to investigate the interaction of a target lens protein (γE-crystallin) with α-crystallin (αH) and to measure the radius of gyration (Rg) of the proteins and their binary complexes in solution under thermal stress. The size of the αH in D2O incubated at 65 °C increased from 69 ± 3 to 81 ± 5 Å over 40 min, in good agreement with previously published small-angle X-ray scattering (SAXS) and SANS measurements. Deuterated γE-crystallin in H2O buffer (γED/H2O) and hydrogenous γE-crystallin in D2O buffer (γEH/D2O) free in solution were of insufficient size and/or too dilute to provide any measurable scattering over the angular range used, which was selected primarily to investigate γE:αH complexes. The evolution of the aggregation size/shape as an indicator of αH chaperone action was monitored by recording the neutron scattering in different H:D solvent contrasts under thermally stressed conditions (65 °C) for binary mixtures of αH, γEH, and γED. It was found that Rg(αH:γED/D2O) > Rg(αH:γEH/D2O) > Rg(αH/D2O) and that Rg(αH:γEH/D2O) ≈ Rg(αH/D2O). The relative sizes observed for the complexes weighted by the respective scattering powers of the various components imply that γE-crystallin binds in a central cavity of the α-crystallin oligomer, during chaperone action.  相似文献   

7.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

8.
The reaction of Mn(NO3)2 · 4H2O, 2,2′-bipyridine (bpy) and sodium dicyanamide (dca) in aqueous medium yielded the {[Mn(bpy)3][Mn(dca)3]2}n (1). The single-crystal X-ray analysis of 1 revealed that the anionic part of the complex, [Mn(dca)3], features infinite 2D sheets with a honeycomb-like porous structure having a void space of ca. 12 Å in which [Mn(bpy)3]2+ cations are encapsulated to yield a fascinating molecular assembly. MnII ions possess an octahedral geometry both in the anionic and cationic components of complex 1. In the anionic component, each MnII ion is bridged by three pairs of dicyanamide anions in an end-to-end fashion with two other MnII ions from adjacent [Mn(dca)3] moieties. This type of linking propagates parallel to the bc crystallographic plane to form 2D sheets. [Mn(bpy)3]2+ is found to have somewhat “squeezed” upon encapsulation. No measurable magnetic interaction was evidenced through variable temperature magnetic susceptibility measurements. However, in addition to the broad g ≈ 2 resonance typical of magnetically diluted [Mn(bpy)3]2+ cations, EPR spectroscopy evidenced exchange narrowing of the [Mn(dca)3] resonance at g ≈ 2 thus indicating operation of weak magnetic interactions extended over the whole 2D network through the dca bridges.  相似文献   

9.
A new Wells-Dawson polyoxometalate-based compound, [CuII(2,2′-bipy)2(H2O)]3[CuI6(pz)6(P2W18O62)2] (2,2′-bipy = 2,2′-bipyridine, pz = pyrizine) (1), has been hydrothermally synthesized and characterized by routine physical methods. Compound 1 exhibits a [CuII(2,2′-bipy)2(H2O)]2+ complex-templated 3D (3,4)-connected framework with the topology of (63)(6284), which is built up by the cross-linking of porous P2W18-Cu layers and CuI-pz chains with Cu2 atoms as intersections. The transition-metal complex cation [CuII(2,2′-bipy)2(H2O)]2+ acts not only as a template locating in the voids of inorganic layers, but also as a charge-balance complex to make the 3D structure more steady. The electrochemistry property of compound 1 has also been discussed.  相似文献   

10.
Oxidation of the title complexes with ozone takes place by hydrogen atom, hydride, and electron transfer mechanisms. The reaction with (NH3)4(H2O)RhH2+ is a two electron process, believed to involve hydride transfer with a rate constant k = (2.2 ± 0.2) × 105 M−1 s−1 and an isotope effect kH/kD = 2. The oxidation of (NH3)4(H2O)RhOOH2+ to (NH3)4(H2O)RhOO2+ by an apparent hydrogen atom transfer is quantitative and fast, k = (6.9 ± 0.3) × 103 M−1 s−1, and constitutes a useful route for the preparation of the superoxo complex. The latter is also oxidized by ozone, but more slowly, k = 480 ± 50 M−1 s−1.  相似文献   

11.
The metal complexation properties of a functionalized N3O2 donor ligand H2L2, where H2L2 stands for 2,6-diacetyl-4-carboxymethyl-pyridine bis(benzoylhydrazone), are investigated by structural and spectroscopic (IR, ESI-MS and EPR) characterization of its Mn(II) and Co(II) complexes. The ligand H2L2 is observed to react essentially in the same fashion as its unmodified parent H2L1 producing mixed-ligand [M(H2L2)(Cl2)] complexes (M = MnII (1), CoII (3)) upon treatment with MCl2. Complexes [M(HL2)(H2O)(EtOH)]BPh4 (M = Mn 2, M = Co 4), incorporating the supporting ligand in the partially deprotonated form (HL2), are formed by salt elimination of the [M(H2L2)(Cl2)] compounds with NaBPh4. Compounds 2 and 4 are isostructural featuring distorted pentagonal-bipyramidal coordinated MnII and CoII ions, with the H2O and EtOH ligands bound in axial positions. Intermolecular hydrogen bonding interactions of the type M-OH2?O-M involving the H2O ligands and the carbonyl functions of the supporting ligand assembles the complexes into dimers. Temperature-dependent magnetic susceptibility measurements (2-300 K) show a substantially paramagnetic Curie behavior for the Mn2+ compound (2) influenced by zero-field splitting and significant orbital angular momentum contribution for 4 (high-spin CoII). The exchange coupling across the MnII-OH2?O-MnII bridges in 2 was found to be less than 0.1 cm−1, suggesting that no significant intradimer exchange coupling occurs via this path.  相似文献   

12.
Two new MnIII complexes Na[Mn(5-SO3-salpnOH)(H2O)] ⋅ 5H2O (1) and Na[Mn(5-SO3-salpn)(MeOH)] ⋅ 4H2O (2) (5-SO3-salpnOH = 1,3-bis(5-sulphonatosalicylidenamino)propan-2-ol, 5-SO3-salpn = 1,3-bis(5-sulphonatosalicylidenamino)propane) have been prepared and characterized. Electrospray ionization-mass spectrometry, UV-visible and 1H NMR spectroscopic studies showed that the two complexes exist in solution as monoanions [Mn(5-SO3-salpn(OH))(solvent)2], with the ligand bound to MnIII through the two phenolato-O and two imino-N atoms located in the equatorial plane. The E1/2 of the MnIII/MnII couple (−47.11 (1) and −77.80 mV (2) vs. Ag/AgCl) allows these complexes to efficiently catalyze the dismutation of , with catalytic rate constants 2.4 × 106 (1) and 3.6 × 106 (2) M−1 s−1, and IC50 values of 1.14 (1) and 0.77 (2) μM, obtained through the nitro blue tetrazolium photoreduction inhibition superoxide dismutase assay, in aqueous solution of pH 7.8. The two complexes are also able to disproportionate up to 250 equivalents of H2O2 in aqueous solution of pH 8.0, with initial turnover rates of 178 (1) and 25.2 (2) mM H2O2 min−1 mM−1 catalyst−1. Their dual superoxide dismutase/catalase activity renders these compounds particularly attractive as catalytic antioxidants.  相似文献   

13.
Adducts formed by [Mn(2,6-dmb)2(H2O)3]n · nH2O, 2,6-dmb=2,6-dimethoxybenzoate(1-), Mn(2,4-dhb)2 · 8H2O, Mn(2,5-dhb)2 · 4H2O or Mn(2,6-dhb)2 · 8H2O, dhb=dihydroxybenzoate(1-), and 2,2-bipyridine (bpy), 4,4-dimethyl-2,2-bipyridine (Me2bpy) or 4,7-dimethyl-1,10-phenanthroline (Me2phen) were isolated in the solid state and characterised by IR, EPR and thermogravimetry. Two of them, [Mn(2,6-dhb)2(bpy)2] (1) and [Mn2(2,6-dmb)4(Me2Phen)2(H2O)2] · 2EtOH (2), were studied by single crystal X-ray diffraction. The adduct 1 is mononuclear and consists of hexa-co-ordinate manganese(II) ions bound to two bipyridine and two 2,6-dihydroxybenzoate ligands in a cis-octahedral arrangement. The complex 2 exhibits a dinuclear structure in which two manganese(II) ions share two carboxylate groups adopting a rather uncommon single-atom bridging mode. The results allow us to conclude that weak, e.g., hydrogen bonding and stacking interactions govern the type of structure, monomeric or dimeric. The spectral features of the complexes are discussed. In particular, the solid-state EPR features of the complexes are interpreted in terms of D, E and Hmax, the high-field resonance. For the monomeric species, the higher is the D value, the higher is Hmax.  相似文献   

14.
New heterodinuclear ZnII/NiII (1) and homodinuclear NiII/NiII (2) water-soluble and air stable compounds of general formula [M(H2O)6][M′(dipic)2] · mH2O have been easily prepared by self-assembly of the corresponding metal(II) nitrates with dipicolinic acid (H2dipic) in water solution at room temperature.  The compounds have been characterized by IR, UV/Vis and atomic absorption spectroscopies, elemental and X-ray single crystal diffraction (for 1 · 4H2O and 2 · 5H2O) analyses.  3D infinite polymeric networks are formed via extensive hydrogen bonding interactions involving all coordinated and crystallization water molecules, and all dipicolinate oxygens, thus contributing to additional stabilization of dimeric units, metal-organic chains and 2D layers.  In 1 · 4H2O, the latter represent a rectangular-grid 2D framework with multiple channels if viewed along the c crystallographic axis, while in 2 · 5H2O intercalated crystallization water molecules are associated to form acyclic nonplanar hexameric water clusters and water dimers which occupy voids in the host metal-organic matrix, with a structure stabilizing effect via host-guest interactions.  The hexameric cluster extends to the larger (H2O)10 one with an unusual geometry (acyclic helical octamer with two pendent water molecules) by taking into account the hydrogen bonds to water ligands in [Ni(H2O)6]2+.  The obtained Zn/Ni compound 1 relates to the recently reported family of heterodimetallic complexes [M(H2O)5M′(dipic)2] · mH2O (M/M′ = Cu/Co, Cu/Ni, Cu/Zn, Zn/Co, Ni/Co, m = 2, 3), what now allows to establish the orders of the metal affinity towards the formation of chelates with dipicolinic acid (CoII > NiII > ZnII > CuII) or aqua species (CoII < NiII < ZnII < CuII).  相似文献   

15.
Glucose, galactose, and mannose in H2O and D2O were ionized by an atmospheric pressure chemical ionization (APCI) method. Isotope effects on fragmentation patterns of the monosaccharides were examined by deuterium replacement of the -OH groups to distinguish the isomers with a single mass spectrometer. The most abundant ions were the [M+H2O]+ and [MD5+D+D2O]+ for using H2O and D2O as solvent and eluent, respectively. Major fragment ions were the [M−OH]+ and [M−OH−H2O]+ in H2O, while those in D2O were the [MD5+D−D2O]+ and [MD5+D−2D2O]+. The differences in the product ions generated in H2O and D2O were due to enhancement of the strength of hydrogen bonding by the deuterium replacement. Variations of the ion intensity ratios of the [M−OH]+/[M−OH−H2O]+ and [MD5−OD]+/[MD5−OD−D2O]+ with the fragmentor voltage showed different trends depending on the kind of monosaccharides. By comparing the ion intensity ratios of the [M+H2O]+/M+, [MD5+D+D2O]+/[MD5+D]+, [M−OH]+/[M−OH−H2O]+, and [MD5+D−D2O]+/[MD5+D−2D2O]+, it was possible to distinguish the isomers of monosaccharides.  相似文献   

16.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

17.
A new macrocyclic hexanuclear manganese(III) 18-azametallacrown-6 compound, [Mn6(ashz)6(CH3OH)3(H2O)3] · 3H2O · 3DMF (1), has been prepared using a trianionic pentadentate ligand N-acetylsalicylhydrazide (ashz3−) and characterised by various techniques such as elemental analysis, IR, UV-vis and fluorescence spectroscopy, cyclic voltammetry and X-ray diffraction. Six ashz3− ligands connect six metal ions to form the cyclic skeleton based on the M-N-N-M linkage. Due to the meridional coordination of the ligand to the Mn3+ ion, the ligand enforces the stereochemistry of the Mn3+ ions as a propeller configuration with alternating Δ/Λ forms. The kinetic studies on catecholase activity of 1 for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) by O2 were done using UV-Vis absorption spectra method. Compound 1 has been evaluated as a model system for the catechol oxidase enzyme and it is found that the compound shows high catecholase activity. It exhibits the activity with a turnover number of 270 h−1. A kinetic treatment on the basis of the Michaelis-Menten model has been applied. The magnetic susceptibility (300-5 K) study indicates antiferromagnetic exchange interactions with J = −2.6 cm−1 between the adjacent Mn3+ ions.  相似文献   

18.
A new azido derivative of 2,2′-dipicolylamine (Dpa), 2-azido-N,N-bis((pyridin-2-yl)methyl)ethanamine, (Dpa-N3) was readily prepared from the known 2-(bis(pyridin-2-ylmethyl)amino)ethanol (Dpa-OH). It was demonstrated that Dpa-N3 could be efficiently labeled with both [Re(CO)3(H2O)3]Br and [99mTc(H2O)3(CO)3]+ to give [Re(CO)3(Dpa-N3)]Br and [99mTc(CO)3(Dpa-N3)]+, respectively. Furthermore, Dpa-N3 was successfully coupled, on the solid phase, to a Peptide Nucleic Acid (PNA) oligomer (H-4-pentynoic acid-spacer-spacer-tgca-tgca-tgca-Lys-NH2; spacer = -NH-(CH2)2-O-(CH2)2-O-CH2-CO-) using the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (Cu-AAC, often referred to as the prototypical “click” reaction) to give the Dpa-PNA oligomer. Subsequent labeling of Dpa-PNA with [99mTc(H2O)3(CO)3]+ afforded [99mTc(CO)3(Dpa-PNA)] in radiochemical yields > 90%. Partitioning experiments in a 1-octanol/water system were carried out to get more insight on the lipophilicity of [99mTc(CO)3(Dpa-N3)]+ and [99mTc(CO)3(Dpa-PNA)]. Both compounds were found rather hydrophilic (log Do/w values at pH = 7.4 are −0.50: [99mTc(CO)3(Dpa-N3)]+ and −0.85: [99mTc(CO)3(Dpa-PNA)]. Biodistribution studies of [99mTc(CO)3(Dpa-PNA)] in Wistar rats showed a very fast blood clearance (0.26 ± 0.1 SUV, 1 h p.i.) and modest accumulation in the kidneys (5.45 ± 0.45 SUV, 1 h p.i.). There was no significant activity in the thyroid and the stomach, demonstrating a high in vivo stability of the 99mTc-labeled Dpa-PNA conjugate.  相似文献   

19.
Two coordination polymers, [Y(H2O)4(H3chhc)]·6H2O (1) and [Cu5(H2O)10(Hchhc)2]·4H2O (2) with H6chhc = cyclohexane-1,2,3,4,5,6-hexacarboxylic acid) represent rare examples of metal complexes with partially protonated cyclohexane-1,2,3,4,5,6-hexacarboxylato ligands. The [Y(H2O)4]3+ units in 1 are interlinked by the triprotonated (H3chhc)3− anions in a η5μ4 bridging mode to form 2D (43)2(46·66·83) topological networks, which are stacked along [0 1 0] direction in ···ABAB··· fashion with the lattice H2O molecules sandwiched between layers. The pentameric [Cu5(H2O)10]10+ units in 2 are bridged by monoprotonated (Hchhc)5− anions in a η8μ6 fashion to generate a 3D MOF of an unprecendented (43)(45·67·83) topology with the lattice H2O molecules in channels. The temperature-dependent magnetic susceptibility data of 2 could be modeled to a combination of a linear chain of equally-spaced Cu(II) ions (J1 = 1.86 cm−1) with an isosceles triangular Cu3 unit (J2 = 5.86 cm−1).  相似文献   

20.
Temperature-sensitive liposomes (TSLs) loaded with doxorubicin (Dox), and Magnetic Resonance Imaging contrast agents (CAs), either manganese (Mn2 +) or [Gd(HPDO3A)(H2O)], provide the advantage of drug delivery under MR image guidance. Encapsulated MRI CAs have low longitudinal relaxivity (r1) due to limited transmembrane water exchange. Upon triggered release at hyperthermic temperature, the r1 will increase and hence, provides a means to monitor drug distribution in situ. Here, the effects of encapsulated CAs on the phospholipid bilayer and the resulting change in r1 were investigated using MR titration studies and 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles. Our results show that Mn2 + interacted with the phospholipid bilayer of TSLs and consequently, reduced doxorubicin retention capability at 37 °C within the interior of the liposomes over time. Despite that, Mn2 +-phospholipid interaction resulted in higher r1 increase, from 5.1 ± 1.3 mM− 1 s− 1 before heating to 32.2 ± 3 mM− 1 s− 1 after heating at 60 MHz and 37 °C as compared to TSL(Gd,Dox) where the longitudinal relaxivities before and after heating were 1.2 ± 0.3 mM− 1 s− 1 and 4.4 ± 0.3 mM− 1 s− 1, respectively. Upon heating, Dox was released from TSL(Mn,Dox) and complexation of Mn2 + to Dox resulted in a similar Mn2 + release profile. From 25 to 38 °C, r1 of [Gd(HPDO3A)(H2O)] gradually increased due to increase transmembrane water exchange, while no Dox release was observed. From 38 °C, the release of [Gd(HPDO3A)(H2O)] and Dox was irreversible and the release profiles coincided. By understanding the non-covalent interactions between the MRI CAs and phospholipid bilayer, the properties of the paramagnetic TSLs can be tailored for MR guided drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号