首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.  相似文献   

2.
Pathogen detection using biosensors is commonly limited due to the need for sensitivity and specificity in detecting targets within mixed populations. These issues were addressed through development of a dual labeling method that allows for both liquid-phase fluorescence in situ hybridization (FISH) and capture antibody targeted detection (CAT-FISH). CAT-FISH was developed using Escherichia coli O157:H7 and Staphylococcus aureus as representative bacteria, and processing techniques were evaluated with regard to FISH intensities and antibody recognition. The alternative fixative solution, methacarn, proved to be superior to standard solid-phase paraformaldehyde fixation procedures, allowing both FISH labeling and antibody recognition. CAT-FISH treated cells were successfully labeled with FISH probes, captured by immunomagnetic separation using fluorescent cytometric array beads, and detected using a cytometric array biosensor. CAT-FISH treated cells were detectable with LODs comparable to the standard antibody-based technique, (~ 103 cells/ml in PBS), and the technique was also successfully applied to two complex matrices. Although immunomagnetic capture and detection using cytometric arrays were demonstrated, CAT-FISH is readily applicable to any antibody-based fluorescence detection platform, and further optimization for sensitivity is possible via inclusion of fluorescently tagged antibodies. Since the confidence level needed for positive identification of a detected target is often paramount, CAT-FISH was developed to allow two separate levels of specificity, namely nucleic acid and protein signatures. With proper selection of FISH probes and capture antibodies, CAT-FISH may be used to provide rapid detection of target pathogens from within complex matrices with high levels of confidence.  相似文献   

3.
Deep infections by melanized fungi deserve special attention because of a potentially fatal, cerebral or disseminated course of disease in otherwise healthy patients. Timely diagnostics are a major problem with these infections. Rolling circle amplification (RCA) is a sensitive, specific and reproducible isothermal DNA amplification technique for rapid molecular identification of microorganisms. RCA-based diagnostics are characterized by good reproducibility, with few amplification errors compared to PCR. The method is applied here to species of Exophiala known to cause systemic infections in humans. The ITS rDNA region of five Exophiala species (E. dermatitidis, E. oligosperma, E. spinifera, E. xenobiotica, and E. jeanselmei) was sequenced and aligned in view of designing specific padlock probes to be used for the detection of single nucleotide polymorphisms (SNPs) of the Exophiala species concerned. The assay proved to successfully amplify DNA of the target fungi at the level of species; while no cross-reactivity was observed. Amplification products were visualized on 1% agarose gels to verify the specificity of probe-template binding. Amounts of reagents were minimized to avoid the generation of false positive results. The sensitivity of RCA may help to improve early diagnostics of these difficult to diagnose infections.  相似文献   

4.
The ability to characterize fungal community structure and dynamics in the environment is constantly challenged by the high levels of diversity that must be confronted. Large-scale oligonucleotide arrays for use in such analytical studies are currently under development; however, the implementation of this approach generally requires substantial time and financial resources. To address the need for a more accessible tool for fungal community profiling and broad diagnostics, we evaluated the potential utility of a reverse dot blot approach utilizing macroarray targets and probes that each consisted of a PCR product of the entire fungal ITS1–5.8S–ITS2 gene region. Samples used to generate the array targets included both culturable and non-culturable fungi and fungal-like protists representing a range of ecological functions. Tests performed using single-species probes within the genus Pythium demonstrated that taxonomic lineages could generally be distinguished when ITS DNA sequence similarity differed by greater than 5–10 %. An artificially constructed community probe of known composition successfully detected eight of the 10 lineages contained on the array with only one clear false positive in 95 targets. The approach was also successfully applied to environmental samples. Taxa resident in the soil of a local orchard were identified using the array and matched those documented in previous studies. Closely related taxa from a previously uncharacterized and geographically distant orchard soil were also identified by the array and had affinities to Leptodontium, Cadophora, Zalerion, and Geomyces. These taxa were further confirmed to be present in the sample by cloning and DNA sequencing. A minority of lineages had DNA targets with low melting temperatures which were not detected on the arrays except under conditions that compromised specificity. Membrane-based ITS macroarrays coupled with community ITS probes possessed sufficient power to detect multiple genus-level lineages of fungi in complex samples and should have broad applications in the study of fungal communities.  相似文献   

5.
Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis.  相似文献   

6.
7.
8.
In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.  相似文献   

9.
Accurate identification of mycetoma causative agent is a priority for treatment. However, current identification tools are far from being satisfactory for both reliable diagnosis and epidemiological investigations. A rapid, simple, and highly efficient molecular based method for identification of agents of black grain eumycetoma is introduced, aiming to improve diagnostic in endemic areas. Rolling Circle Amplification (RCA) uses species-specific padlock probes and isothermal DNA amplification. The tests were based on ITS sequences and developed for Falciformispora senegalensis, F. tompkinsii, Madurella fahalii, M. mycetomatis, M. pseudomycetomatis, M. tropicana, Medicopsis romeroi, and Trematosphaeria grisea. With the isothermal RCA assay, 62 isolates were successfully identified with 100% specificity and no cross reactivity or false results. The main advantage of this technique is the low-cost, high specificity, and simplicity. In addition, it is highly reproducible and can be performed within a single day.  相似文献   

10.
Molecular analysis of green-tide-forming macroalgae in the Yellow Sea   总被引:2,自引:0,他引:2  
In the summer of 2008, free-floating green algae bloomed in the Yellow Sea. Samples were collected in a wide area (119°32′-122°00′E, 32°25′-36°49′N). We calculated the sequence divergences of nuclear ITS, chloroplast rbcL, and psbA data of free-floating samples collected from the Yellow Sea and Ulvaceae from Europe and Japan. In the ITS sequence, 19 out of the 21 Yellow Sea samples of 2008 were identical to those of a sample taken at Qingdao in 2007. A low divergence (0.2%) was found in remaining two samples. Similar evidence was shown by pairwise distances of rbcL and psbA gene sequence data, implying the uniformity of the Yellow Sea blooms in 2007 and 2008. The ITS sequence of the Yellow Sea samples differed 8.1-10.8% from free-floating Enteromorpha or Ulva reported worldwide. ITS-based molecular phylogenetic results and rbcL sequence data grouped the free-floating alga in the Yellow Sea into one clade with Enteromorpha procera, Enteromorpha linza and Enteromorpha prolifera. Furthermore, both morphological characteristics and ribotype network of the ITS sequences imply that the blooming algae in 2007 and 2008 were E. prolifera. The haplotypes of the Yellow Sea free-floating E. prolifera are closely related to those from the Japanese coast but less to European and American algae.  相似文献   

11.
The alcoholic fermentation in Brazil displays some peculiarities because the yeast used is recycled in a non-aseptic process. After centrifugation, the cells are treated with acid to control the bacterial growth. However, it is difficult to manage the indigenous yeasts without affecting the main culture of Saccharomyces cerevisiae. This work evaluated how the cell treatment could be modified to combat contaminant yeasts based on the differential sensitivities to low pH and high concentrations of ethanol displayed by an industrial strain of S. cerevisiae and three strains of Dekkera bruxellensis, which are common contaminant yeasts in Brazilian fermentation processes. The tests were initially performed in rich medium with a low pH or a high concentration of ethanol to analyse the yeast growth profile. Then, the single and combined effects of low pH and ethanol concentration on the yeast cell viability were evaluated under non-proliferative conditions. The effects on the fermentation parameters were also verified. S. cerevisiae grew best when not subjected to the stresses, but this yeast and D. bruxellensis had similar growth kinetics when exposed to a low pH or increased ethanol concentrations. However, the combined treatments of low pH (2.0) and ethanol (11 or 13 %) resulted in a decrease of D. bruxellensis cell viability almost three times higher than of S. cerevisiae, which was only slightly affected by all cell treatments. The initial viability of the treated cells was restored within 8 h of growth in sugar cane juice, with the exception of the combined treatment for D. bruxellensis. The ethanol-based cell treatment, in despite of slowing the fermentation, could decrease and maintain D. bruxellensis population under control while S. cerevisiae was taking over the fermentation along six fermentative cycles. These results indicate that it may be possible to control the growth of D. bruxellensis without major effects on S. cerevisiae. The cells could be treated between the fermentation cycles by the parcelled addition of 13 % ethanol to the tanks in which the yeast cream is treated with sulphuric acid at pH 2.0.  相似文献   

12.
The yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions. The results have confirmed the previous reports of the low capacity of D. bruxellensis cells to assimilate sucrose, which seems to be the main factor that can cause a bottleneck in its use as fermentative yeast. Furthermore, the cells of D. bruxellensis showed a tendency to deviate most of sugar available for biomass and organic acids (lactic and acetic) compared with Saccharomyces cerevisiae, when calculated on the basis of their respective yields. As well as this, the acetate production from molasses medium by both yeasts was in marked contrast with the previous data on sugarcane juice. Glycerol and ethanol production by D. bruxellensis cells achieved levels of 33 and 53 % of the S. cerevisiae, respectively. However, the ethanol yield was similar for both yeasts. It is worth noting that this yeast did not accumulate trehalose when the intracellular glycogen content was 30 % lower than in S. cerevisiae. The lack of trehalose did not affect yeast viability under fermentation conditions. Thus, the adaptive success of D. bruxellensis under industrial fermentation conditions seems to be unrelated to the production of these reserve carbohydrates.  相似文献   

13.
A comprehensive understanding of the presence and role of yeasts in bottled wines helps to know and control the organoleptic quality of the final product. The South Region of Brazil is an important wine producer, and the state of “Rio Grande do Sul” (RS) accounts for 90% of Brazilian wines. The state of “Santa Catarina” (SC) started the production in 1975, and is currently the fifth Brazilian producer. As there is little information about yeasts present in Brazilian wines, our main objective was to assess the composition of culturable yeasts associated to bottled wines produced in RS and SC, South of Brazil. We sampled 20 RS and 29 SC bottled wines produced between 2003 and 2011, and we isolated culturable yeasts in non-selective agar plates. We identified all isolates by sequencing of the D1/D2 domain of LSU rDNA or ITS1-5.8 S-ITS2 region, and comparison with type strain sequences deposited in GenBank database. Six yeast species were shared in the final product in both regions. We obtained two spoilage yeast profiles: RS with Zygosaccharomyces bailii and Pichia membranifaciens (Dekkera bruxellensis was found only in specific table wines); and SC with Dekkera bruxellensis and Pichia manshurica. Knowledge concerning the different spoilage profiles is important for winemaking practices in both regions.  相似文献   

14.
Ophiocordyceps sinensis (Berk.) Sung, Sung, Hywel-Jones & Spatafora (syn. Cordyceps sinensis) one of the entomopathogenic fungi, is a rare Traditional Chinese Medicine (TCM) found in the Qinghai-Tibetan Plateau. Polymerase Chain Reaction (PCR) and Fluorescence in situ hybridization (FISH) methods are necessary to identify the mycelia or spores of O. sinensis from its habitat and to monitor its dispersal, colonization and infectivity. To develop both primers and probe specific to O. sinensis, ribosomal DNA (rDNA) amplified with universal primers from O. sinensis genomic DNA and seven closely related fungi were sequenced. According to these sequences, the upper and lower primers (OsT-F and OsT-R) were designed within internal transcribed spacer region 1 (ITS1) and ITS2 and flanked by universal primers ITS5 and ITS4, respectively. The designed primers were used for general PCR, touchdown PCR, or both together with the universal primers for nested-touchdown PCR. The results showed that only the extracted DNA of O. sinensis was specifically amplified. The sensitivity of nested-touchdown PCR with extracted DNA of O. sinensis is as low as 10−14 g (10 fg) and at least 1000 times higher than the other PCR methods. In addition, Cy5-labeled probe (OsLSU) for cytoplasmic LSU rRNA was hybridized with the ascospores of O. sinensis. It showed a strong red fluorescence throughout the whole cell but did not cross-react with other entomopathogenic fungi. Taken together, these methods were useful for studying the biology and ecology of O. sinensis.  相似文献   

15.
To determine whether ITS sequences in the rrn operon are suitable for identifying individual Acinetobacter Acb complex members, we analysed length and sequence differences between multiple ITS copies within the genomes of individual strains. Length differences in ITS reported previously between A. nosocomialis BCRC15417T (615 bp) and other strains (607 bp) can be explained by presence of an insertion (indel 13i/1) in the longer ITS variant. The same Indel 13i/1 was also found in ITS sequences of ten strains of A. calcoaceticus, all 639 bp long, and the 628 bp ITS of Acinetobacter strain BENAB127. Four additional indels (13i/2–13i/5) were detected in Acinetobacter strain c/t13TU 10090 ITS length variants (608, 609, 620, 621 and 630 bp). These ITS variants appear to have resulted from horizontal gene transfer involving other Acinetobacter species or in some cases unrelated bacteria. Although some ITS copies in strain c/t13TU 10090 are of the same length (620 bp) as those in Acinetobacter strains b/n1&3, A. pittii (10 strains), A. calcoaceticus and A. oleivorans (not currently acknowledged as an Acb member), their individual ITS sequences differ. Thus ITS length by itself can not by itself be used to identify Acb complex strains. A shared indel in ITS copies in two separate Acinetobacter species compromises the specificity of ITS targeted probes, as shown with the Aun-3 probe designed to target the ITS in A. pitti. The presence of indel 13i/5 in the ITS of Acinetobacter strain c/t13TU means it too responded positively to this probe. Thus, neither ITS sequencing nor the currently available ITS targeted probes can distinguish reliably between Acb member species.  相似文献   

16.
In the light of the poor culturability of Acidobacteria and Verrucomicrobia species, group-specific real-time (qPCR) systems were developed based on the 16S rRNA gene sequences from culturable representatives of both groups. The number of DNA targets from three different groups, i.e. Holophagae (Acidobacteria group 8) and Luteolibacter/Prosthecobacter and unclassified Verrucomicrobiaceae subdivision 1, was determined in DNA extracts from different leek (Allium porrum) rhizosphere soil compartments and from bulk soil with the aim to determine the distribution of the three bacterial groups in the plant-soil ecosystem. The specificity of the designed primers was evaluated in three steps. First, in silico tests were performed which demonstrated that all designed primers 100% matched with database sequences of their respective groups, whereas lower matches with other non-target bacterial groups were found. Second, PCR amplification with the different primer sets was performed on genomic DNA extracts from target and from non-target bacteria. This test demonstrated specificity of the designed primers for the target groups, as single amplicons of expected sizes were found only for the target bacteria. Third, the qPCR systems were tested for specific amplifications from soil DNA extracts and 48 amplicons from each primer system were sequenced. All sequences were > 97% similar to database sequences of the respective target groups. Estimated cell numbers based on Holophagae-, Luteolibacter/Prosthecobacter- and unclassified Verrucomicrobiaceae subdivision 1-specific qPCRs from leek rhizosphere compartments and bulk soils demonstrated higher preference for one or both rhizosphere compartments above bulk soil for all three bacterial groups.  相似文献   

17.
Penicillium marneffei infection is a deadly disease and early diagnosis leads to prompt and appropriate antifungal therapy. To develop a sensitive method to diagnose P. marneffei infection, a multiplex ligation-dependent probe amplification (MLPA) assay was adapted. This method can rapidly and specifically detect P. marneffei DNA in cultured cells and paraffin-embedded tissue samples. Three pairs of probes were designed for amplifying the internally (intergenic) transcribed spacer (ITS) region of P. marneffei rRNA using a systematic phylogenetic analysis. These three probe sets produced three amplicons of 198, 166, and 152 bp, respectively, specific for P. marneffei. In contrast, there was only one 198 bp amplicon produced for Talaromyces stipitatus, and one 152 bp amplicon for P. funiculosum, T. intermedius and T. derxii. The probes did not amplify any other reference strains. An array of 40 P. marneffei strains isolated from human patients, bamboo rat, and the local environment was tested by using MLPA, and all were positively identified. Most importantly, P. marneffei in paraffin-embedded tissue specimens from infected human patients was positively amplified by MLPA. The sensitivity and specificity of the MLPA assay could be a useful tool for prompt diagnosis, pathogen characterization, and epidemiological studies of fungal infections.  相似文献   

18.
The alcoholic fermentation for fuel ethanol production in Brazil occurs in the presence of several microorganisms present with the starter strain of Saccharomyces cerevisiae in sugarcane musts. It is expected that a multitude of microbial interactions may exist and impact on the fermentation yield. The yeast Dekkera bruxellensis and the bacterium Lactobacillus fermentum are important and frequent contaminants of industrial processes, although reports on the effects of both microorganisms simultaneously in ethanolic fermentation are scarce. The aim of this work was to determine the effects and interactions of both contaminants on the ethanolic fermentation carried out by the industrial yeast S. cerevisiae PE-2 in two different feedstocks (sugarcane juice and molasses) by running multiple batch fermentations with the starter yeast in pure or co-cultures with D. bruxellensis and/or L. fermentum. The fermentations contaminated with D. bruxellensis or L. fermentum or both together resulted in a lower average yield of ethanol, but it was higher in molasses than that of sugarcane juice. The decrease in the CFU number of S. cerevisiae was verified only in co-cultures with both D. bruxellensis and L. fermentum concomitant with higher residual sucrose concentration, lower glycerol and organic acid production in spite of a high reduction in the medium pH in both feedstocks. The growth of D. bruxellensis was stimulated in the presence of L. fermentum resulting in a more pronounced effect on the fermentation parameters than the effects of contamination by each microorganism individually.  相似文献   

19.
The identification of the conventionally accepted species of Clavulina (Cantharellales, Basidiomycota) in Europe (Clavulina amethystina, Clavulina cinerea, Clavulina cristata, and Clavulina rugosa) is often difficult and many specimens are not straightforwardly assignable to any of those four species, which is why some authors have questioned their identity. In order to assess the status of those species, a morphological examination was combined with the molecular analysis of the ITS region. The same six major clades were obtained in the Bayesian and parsimony phylogenetic analyses, and all six clades were well-supported at least by one of the analyses. Morphological characters, such as the overall branching pattern, the presence and intensity of grey colour, the cristation of the apices, and basidiospore size and shape were to various extents correlated with the phylogenetic signal obtained from the ITS region. The congruence between the molecular analyses and morphology, rather than geographical origin, suggests the existence of several species that can be delimited using a combined phylogenetic and morphological species recognition. The analyses revealed that C. cristata and C. rugosa are well-delimited species. In contrast, more than one taxa could be subsumed under the names C. amethystina and C. cinerea, the taxonomical complexity of which is discussed. The ITS region is proved to be adequate to separate phylogenetic species of Clavulina.  相似文献   

20.
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells’ autofluorescence, fluorophore inadequate selection and probes’ low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells’ fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号