首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microorganisms in consortia perform many tasks more effectively than individual organisms and in addition grow more rapidly and in greater abundance. In this work, experimental datasets were assembled consisting of all possible selected combinations of perchlorate reducing strains of microorganisms and their perchlorate degradation rates were evaluated. A genetic algorithm (GA) methodology was successfully applied to define sets of microbial strains to achieve maximum rates of perchlorate degradation. Over the course of twenty generations of optimization using a GA, we saw a statistically significant 2.06 and 4.08-fold increase in average perchlorate degradation rates by consortia constructed using solely the perchlorate reducing bacteria (PRB) and by consortia consisting of PRB and accompanying organisms that did not degrade perchlorate, respectively. The comparison of kinetic rates constant in two types of microbial consortia additionally showed marked increases.  相似文献   

2.
Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, and 4-phenanthroic acid, were identified during pyrene degradation. Pyrene-4,5-dione, which accumulates as an end product in some gram-negative bacterial cultures, was further utilized and degraded by Mycobacterium sp. strain KMS. Enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS were studied, using 2-D gel electrophoresis. The first protein in the catabolic pathway, aromatic-ring-hydroxylating dioxygenase, which oxidizes pyrene to cis-4,5-pyrene-dihydrodiol, was induced with the addition of pyrene and pyrene-4,5-dione to the cultures. The subcomponents of dioxygenase, including the alpha and beta subunits, 4Fe-4S ferredoxin, and the Rieske (2Fe-2S) region, were all induced. Other proteins responsible for further pyrene degradation, such as dihydrodiol dehydrogenase, oxidoreductase, and epoxide hydrolase, were also found to be significantly induced by the presence of pyrene and pyrene-4,5-dione. Several nonpathway-related proteins, including sterol-binding protein and cytochrome P450, were induced. A pyrene degradation pathway for Mycobacterium sp. strain KMS was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of pyrene degradation.  相似文献   

3.
Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified.  相似文献   

4.
A cellulose-degrading defined mixed culture (designated SF356) consisting of five bacterial strains (Clostridium straminisolvens CSK1, Clostridium sp. strain FG4, Pseudoxanthomonas sp. strain M1-3, Brevibacillus sp. strain M1-5, and Bordetella sp. strain M1-6) exhibited both functional and structural stability; namely, no change in cellulose-degrading efficiency was observed, and all members stably coexisted through 20 subcultures. In order to investigate the mechanisms responsible for the observed stability, “knockout communities” in which one of the members was eliminated from SF356 were constructed. The dynamics of the community structure and the cellulose degradation profiles of these mixed cultures were determined in order to evaluate the roles played by each eliminated member in situ and its impact on the other members of the community. Integration of each result gave the following estimates of the bacterial relationships. Synergistic relationships between an anaerobic cellulolytic bacterium (C. straminisolvens CSK1) and two strains of aerobic bacteria (Pseudoxanthomonas sp. strain M1-3 and Brevibacillus sp. strain M1-5) were observed; the aerobes introduced anaerobic conditions, and C. straminisolvens CSK1 supplied metabolites (acetate and glucose). In addition, there were negative relationships, such as the inhibition of cellulose degradation by producing excess amounts of acetic acid by Clostridium sp. strain FG4, and growth suppression of Bordetella sp. strain M1-6 by Brevibacillus sp. strain M1-5. The balance of the various types of relationships (both positive and negative) is thus considered to be essential for the stable coexistence of the members of this mixed culture.  相似文献   

5.
Two bacterial strains, the natural isolate Arthrobacter sp. FG1 and the engineered strain Pseudomonas putida PaW340/pDH5, were compared for their efficiency in the degradation of 4-chlorobenzoic acid in a slurry phase system. The recombinant strain was obtained by cloning the Arthrobacter sp. FG1 dehalogenase encoding genes in P. putida PaW340. In the slurry inoculated with pre-adapted cultures of Arthrobacter sp. FG1, the 4-chlorobenzoic acid degradation was found to be slower than that observed in the slurry inoculated with the recombinant strain P. putida PaW340/pDH5, regardless of the presence or absence of soil indigenous bacteria. Slurry inoculated with mixed cultures of Arthrobacter sp. FG1 and the 4-hyroxybenzoic acid degrader P. putida PaW340 did not show any improvement in 4-chlorobenzoic acid degradation.  相似文献   

6.
Pentachlorophenol (PCP) is an extremely dangerous worldwide pollutant due to its high toxicity towards all organisms. It has been introduced into the environment mainly as a wood preservative, biocides and from the bleaching of paper or tissues. The use of PCP indiscriminate has led to the contamination of water and soil systems. Many countries have specific regulations, guidelines or procedures for the management and disposal of PCP but the most common methods are: adsorption with activate carbons, incineration in an approved and secure area, closed in sealed containers and biological degradation. PCP depletion can occur either by abiotic processes such as: absorption, volatilization and photo degradation or by biotic degradation. One of the main studies focused on remediation using plants, animals and microbial communities. Aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions and at different PCP concentrations. Bacterial strains such as Pseudomonas sp., Sphingomonas sp., Arthrobacter sp., Mycobacterium sp., Flavobacterium sp., Serratia sp. and Bacillus sp., and fungal cultures as Trametes sp., Phanerochaete sp., Anthracophyllum sp., Armillaria sp., Bjerkandera sp., Ganoderma sp., Lentinula sp., Penicillium sp, Trichoderma sp., Rhizopus sp. and Plerotus sp. showed various rates and extent of PCP degradation. This review focuses on PCP degradation by various aerobic and anaerobic microorganisms with emphases on the biological and chemical aspects. Furthermore we will analyze intermediate products, processes and enzymes involved in the degradation of PCP in different environmental conditions and at various PCP concentrations.  相似文献   

7.
Environmental Factors That Control Microbial Perchlorate Reduction   总被引:2,自引:1,他引:1       下载免费PDF全文
As part of a study to elucidate the environmental parameters that control microbial perchlorate respiration, we investigated the reduction of perchlorate by the dissimilatory perchlorate reducer Dechlorosoma suillum under a diverse set of environmental conditions. Our results demonstrated that perchlorate reduction by D. suillum only occurred under anaerobic conditions in the presence of perchlorate and was dependent on the presence of molybdenum. Perchlorate reduction was dependent on the presence of the enzyme chlorite dismutase, which was induced during metabolism of perchlorate. Anaerobic conditions alone were not enough to induce expression of this enzyme. Dissolved oxygen concentrations less than 2 mg liter−1 were enough to inhibit perchlorate reduction by D. suillum. Similarly to oxygen, nitrate also regulated chlorite dismutase expression and repressed perchlorate reduction by D. suillum. Perchlorate-grown cultures of D. suillum preferentially reduced nitrate in media with equimolar amounts of perchlorate and nitrate. In contrast, an extended (40 h) lag phase was observed if a similar nitrate-perchlorate medium was inoculated with a nitrate-grown culture. Perchlorate reduction commenced only when nitrate was completely removed in either of these experiments. In contrast to D. suillum, nitrate had no inhibitory effects on perchlorate reduction by the perchlorate reducer Dechloromonas agitata strain CKB. Nitrate was reduced to nitrite concomitant with perchlorate reduction to chloride. These studies demonstrate that microbial respiration of perchlorate is significantly affected by environmental conditions and perchlorate reduction is directly dependent on bioavailable molybdenum and the presence or absence of competing electron acceptors. A microbial treatment strategy can achieve and maintain perchlorate concentrations below the recommended regulatory level, but only in environments in which the variables described above can be controlled.  相似文献   

8.
This paper describes the production of isoprenoid wax esters during the aerobic degradation of 6,10,14-trimethylpentadecan-2-one and phytol by four bacteria (Acinetobacter sp. strain PHY9, Pseudomonas nautica [IP85/617], Marinobacter sp. strain CAB [DSMZ 11874], and Marinobacter hydrocarbonoclasticus [ATCC 49840]) isolated from the marine environment. Different pathways are proposed to explain the formation of these compounds. In the case of 6,10,14-trimethylpentadecan-2-one, these esters result from the condensation of some acidic and alcoholic metabolites produced during the biodegradation, while phytol constitutes the alcohol moiety of most of the esters produced during growth on this isoprenoid alcohol. The amount of these esters formed increased considerably in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. Although conflicting evidence exists regarding the stability of these esters in sediments, it seems likely that, under some conditions, bacterial esterification can enhance the preservation potential of labile compounds such as phytol.  相似文献   

9.
Microbial degradation of pentachlorophenol   总被引:16,自引:0,他引:16  
Pentachlorophenol (PCP) was the most prevalent wood preservative for many years worldwide. Its widespread use had led to contamination of various environments. Traditional methods of PCP clean-up include storage in land-fill sites, incineration and abiotic degradation processes such as photodecomposition. Some aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions. Axenic bacterial cultures, Flavobacterium sp., Rhodococcus sp., Arthrobacter sp., Pseudomonas sp., Sphingomonas sp., and Mycobacterium sp., and fungal cultures, Phanerochaete sp. and Trametes sp. exhibit varying rates and extent of PCP degradation. This paper provides some general information on properties of PCP and reviews the influence of nutrient amendment, temperature and pH on PCP degradation by various aerobic and anaerobic microorganisms. Where information is available, proposed degradation pathways, intermediates and enzymes are reviewed.  相似文献   

10.
An enrichment culture method was applied to the isolation of a bacterial strain responsible for biodegradation of methidathion residues, from a methidathion-treated orchard. The strain (SPL-2) was identified as Serratia sp. according to its physiological characteristics and 16S rRNA gene phylogenetic analysis. Serratia sp. was able to grow in a poor medium consisting of mineral salts and using methidathion as the sole carbon source at a concentrations of 50–150 mg/L. The effects of multifactors on degradation of methidathion in pure cultures by Serratia sp. were investigated using an orthogonal experimental design L9 (34). On the basis of range analysis and ANOVA results, the most significant factors were temperature and inoculum size. The optimal conditions for methidathion biodegradation in pure cultures were a temperature in 30 °C, an inoculum size of 10 %, pH?=?7 and an aeration rate of 200 rpm. Two different concentrations of strain SPL-2 fermenting liquids (OD600?=?0.2 and OD600?=?0.4) were prepared and applied to remove methidathion residues from agricultural products, and this process can be described by a first order rate model. In contrast to controls, the DT50 of methidathion was shortened by 35.7 %, 8.2 % and by 62.3 %, 57.5 % on OD600?=?0.2 and OD600?=?0.4 treated haricot beans and peaches, respectively. These results suggest that the isolated bacterial strain may have potential for use in bioremediation of methidathion-contaminated crops.  相似文献   

11.
The biodegradation of estradiol (E2), estrone (E1), and ethinylestradiol (EE2) was investigated using mixed bacterial cultures enriched from activated sludge. Enrichments were carried out on E2 or EE2 in batch conditions with acetonitrile as additional carbon source. Degradation experiments were performed both using hormones as sole carbon source or with an additional source. The hormones were completely degraded by these cultures. Estradiol was rapidly converted to E1 within 24 h. Thereafter, E1 degradation began, displaying a lag phase ranging from 3 to 4 days. Estrone depletion took from 48 h to more than 6 days, depending on the culture conditions. For EE2 degradation, when it was the sole carbon source, the lag phase and the time required for its complete removal (7 and 15 days, respectively) were shorter that in cultures with a supplementary carbon source. The specific degradation rates observed for E2 both with and without an additional carbon source were similar. By contrast, the specific degradation rates for E1 and EE2 were, respectively, seven and 20 times faster when these hormones were supplied as the sole carbon source. The bacterial community structure of each culture was characterized by molecular and cultural methods. The mixed cultures were made up of species belonging to Alcaligenes faecalis, Pusillimonas sp., Denitrobacter sp., and Brevundimonas diminuta or related to uncultured Bacteroidetes. The isolated strain B. diminuta achieved the conversion of E2 to E1.  相似文献   

12.
The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134–197 fmol STX cell−1) was similar to the parent cultures (169–206 fmol STX cell−1), however cultures grown with single bacterial types contained less toxin (134–146 fmol STX cell−1) than offspring or parent cultures grown with more complex mixed bacterial communities (152–176 fmol STX cell−1). Specific toxin production rate (fmol STX day−1) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell−1 day−1) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX production of dinoflagellates. In G. catenatum the mechanism appears likely to be due to bacterial effects on dinoflagellate physiology rather than bacterial biotransformation of PST toxins.  相似文献   

13.
In the present study, cultivation of aerobic granular biomass capable of biodegradation of dibutyl phosphite, an organophosphite, and isolation of dibutyl phosphite degrading bacterial strains, are reported for the first time. The strain AMGD5, identified as Sphingobium sp., based on 16S rRNA sequencing, degraded dibutyl phosphite efficiently and utilised it as the sole source of carbon and phosphorus. Microbial degradation of dibutyl phosphite caused a significant decrease in medium pH, leading to cessation of growth and further degradation of dibutyl phosphite. Under buffered conditions, complete degradation of up to 3 mM of dibutyl phosphite was achieved within 60 h. The strain showed almost similar growth pattern when either phosphite or dibutyl phosphite was used as the phosphorous source. A 4-fold enhancement in phosphatase activity was evident in dibutyl phosphite fed cells, implying their role in dibutyl phosphite degradation. Sphingobium sp. AMGD5 can be a potential candidate for bioremediation of dibutyl phosphite contaminated waters or sites.  相似文献   

14.
This paper describes the production of 5,9,13-trimethyltetradeca-4E,8E,12-trienyl-5,9,13-trimethyltetradeca-4E,8E,12-trienoate during the aerobic degradation of squalene by a Marinobacter strain, 2Asq64, isolated from the marine environment. A pathway involving initial cleavage of the C10-C11 or C14-C15 double bonds of the squalene molecule is proposed to explain the formation of this polyunsaturated isoprenoid wax ester. The isoprenoid wax ester content reached 1.1% of the degraded squalene at the mid-exponential growth phase and then decreased during the stationary phase. The wax ester content increased by approximately threefold in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. The bacterial strain is then characterized as a member of a new species, for which we propose the name Marinobacter squalenivorans sp. nov.  相似文献   

15.
The persistence of propanil in soil and aquatic environments along with the possible accumulation of toxic degradation products, such as chloroanilines, is of environmental concern. In this work, a continuous small-scale bioprocess to degrade the herbicide propanil, its main catabolic by-product, 3,4-dichloroaniline (3,4-DCA), and the herbicide adjuvants is carried out. A microbial consortium, constituted by nine bacterial genera, was selected. The isolated strains, identified by amplification and sequencing of their 16S rDNA, were: Acidovorax sp., Luteibacter (rhizovicinus), Xanthomonas sp., Flavobacterium sp., Variovorax sp., Acinetobacter (calcoaceticus), Pseudomonas sp., Rhodococcus sp., and Kocuria sp. The ability of the microbial consortium to degrade the herbicide was evaluated in a biofilm reactor at propanil loading rates ranging from 1.9 to 36.8 mg L?1 h?1. Complete removal of propanil, 3,4-DCA, chemical oxygen demand and total organic carbon was obtained at propanil loading rates up to 24.9 mg L?1 h?1. At higher loading rates, the removal efficiencies decayed. Four of the identified strains could grow individually in propanil, and 3,4-DCA: Pseudomonas sp., Acinetobacter calcoaceticus, Rhodococcus sp., and Xanthomonas sp. The Kokuria strain grew on 3,4-DCA, but not on propanil. The first three bacteria have been related to biodegradation of phenyl urea herbicides or chlorinated anilines. Although some strains of the genera Xanthomonas and Kocuria have a role in the biodegradation of several xenobiotic compounds, as far as we know, there are no reports about degradation of propanil by Xanthomonas or 3,4-DCA by Kocuria species.  相似文献   

16.
Polyhydroxyalkanoates (PHAs) are accumulated as intracellular granules by many bacteria under unfavorable conditions, enhancing their fitness and stress resistance. Poly(3-hydroxybutyrate) (PHB) is the most widespread and best-known PHA. Apart from the genes that catalyze polymer biosynthesis, natural PHA producers have several genes for proteins involved in granule formation and/or with regulatory functions, such as phasins, that have been shown to affect polymer synthesis. This study evaluates the effect of PhaP, a phasin, on bacterial growth and PHB accumulation from glycerol in bioreactor cultures of recombinant Escherichia coli carrying phaBAC from Azotobacter sp. strain FA8. Cells expressing phaP grew more, and accumulated more PHB, both using glucose and using glycerol as carbon sources. When cultures were grown in a bioreactor using glycerol, PhaP-bearing cells produced more polymer (2.6 times) and more biomass (1.9 times) than did those without the phasin. The effect of this protein on growth promotion and polymer accumulation is expected to be even greater in high-density cultures, such as those used in the industrial production of the polymer. The recombinant strain presented in this work has been successfully used for the production of PHB from glycerol in bioreactor studies, allowing the production of 7.9 g/liter of the polymer in a semisynthetic medium in 48-h batch cultures. The development of bacterial strains that can efficiently use this substrate can help to make the industrial production of PHAs economically feasible.  相似文献   

17.
Inhibition of bacterial perchlorate reduction by zero-valent iron   总被引:2,自引:0,他引:2  
Perchlorate was reduced by a mixed bacterial culture over a pH range of 7.0–8.9. Similar rates of perchlorate reduction were observed between pH 7.0 and 8.5, whereas significantly slower reduction occurred at pH 8.9. Addition of iron metal, Fe(0), to the mixed bacterial culture resulted in slower rates of perchlorate reduction. Negligible perchlorate reduction was observed under abiotic conditions with Fe(0) alone in a reduced anaerobic medium. The inhibition of perchlorate reduction observed in the presence of Fe(0) is in contrast to previous studies that have shown faster rates of contaminant reduction when bacteria and Fe(0) were combined compared to bacteria alone. The addition of Fe(0) resulted in a rise in pH, as well as precipitation of Fe minerals that appeared to encapsulate the bacterial cells. In experiments where pH was kept constant, the addition of Fe(0) still resulted in slower rates of perchlorate reduction suggesting that encapsulation of bacteria by Fe precipitates contributed to the inhibition of the bacterial activity independent of the effect of pH on bacteria. These results provide the first evidence linking accumulation of iron precipitates at the cell surface to inhibition of environmental contaminant degradation. Fe(0) was not a suitable amendment to stimulate perchlorate-degrading bacteria and the bacterial inhibition caused by precipitation of reduced Fe species may be important in other combined anaerobic bacterial–Fe(0) systems. Furthermore, the inhibition of bacterial activity by iron precipitation may have significant implications for the design of in situ bioremediation technologies for treatment of perchlorate plumes.  相似文献   

18.
Growth and degradation of 2,4-dinitrotoluene (2,4-DNT) were compared in liquid cultures in shake flasks for Burkholderia sp. strain DNT and strain DNT engineered to produce Vitreoscilla (bacterial) hemoglobin (strain YV1). Parameters varied included aeration rate, initial 2,4-DNT concentration (50 and 200 ppm), and concentration and type of cosubstrate (yeast extract, succinate, casamino acids, and tryptic soy broth). 2,4-DNT degradation increased with increasing cosubstrate concentration and was greater for strain YV1 than strain DNT under most conditions tested; the greatest advantages of YV1 (up to 3.5-fold) occurred under limited aeration. A third strain (YV1m), derived from YV1 by repeated growth on 2,4-DNT-containing medium, demonstrated increased 2,4-DNT degradation (up to 1.3-fold compared to YV1) at 200 ppm 2,4-DNT. The growth profiles of the three strains with respect to each other were in general similar to those of the degradation patterns of 2,4-DNT.  相似文献   

19.
Bioluminescence, mRNA levels, and toluene degradation rates in Pseudomonas putida TVA8 were measured as a function of various concentrations of toluene and trichloroethylene (TCE). TVA8 showed an increasing bioluminescence response to increasing TCE and toluene concentrations. Compared to uninduced TVA8 cultures, todC1 mRNA levels increased 11-fold for TCE-treated cultures and 13-fold for toluene-treated cultures. Compared to uninduced P. putida F1 cultures, todC1 mRNA levels increased 4.4-fold for TCE-induced cultures and 4.9-fold for toluene-induced cultures. Initial toluene degradation rates were linearly correlated with specific bioluminescence in TVA8 cultures.  相似文献   

20.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号