首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of purines and pyrimidines by adults of Schistosoma mansoni was studied. Cytosine, thymine, and uracil entered the worms entirely by diffusion. Adenine, guanine, hypoxanthine, and the nucleosides adenosine and uridine were absorbed in part by mediated systems. The results of inhibitor studies suggest the presence of 5 distinct transport sites for these latter compounds. The interaction of adenosine monophosphate with these sites was also studied.  相似文献   

2.
The uptake of adenine and hypoxanthine in HGPRT-deficient and normal human erythrocytes was measured using a rapid filtering centrifugation technique. The transport of hypoxanthine as well as of adenine is impaired in the mutant cells. The transport of hypoxanthine into HGPRT-deficient erythrocytes differs from that into normal cells with respect to a higher accumulation capacity, to lower initial velocities and to the kinetic properties of the translocator. In addition, a higher accumulation capacity and lower initial velocities of adenine uptake could be demonstrated in mutant cells. A linkage of the purine translocator with purine phosphoribosyltransferases associated with the erythrocyte membrane is discussed.  相似文献   

3.
4.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

5.
Purine and pyrimidine metabolism in human muscle and cultured muscle cells   总被引:3,自引:0,他引:3  
Using radiochemical methods, we determined the activities of various enzymes of purine and pyrimidine metabolism in homogenates of human skeletal muscle and of cultured human muscle cells. Results show a large discrepancy between the enzyme activities in muscle and cultured cells. With regard to purine metabolism, adenylate (AMP) deaminase activity was only 1-3% in cultured cells compared to that in muscle, whereas the activity of adenosine deaminase, purine-nucleoside phosphorylase, adenosine kinase, adenine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase was 7-15-fold higher in the cultured cells. The enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase and uridine kinase showed activity of 100-200-fold higher in cultured cells than in adult muscle. The differences in enzyme activity are probably related to the low differentiation stage and the absence of contractile activity in the cultured muscle cells. Care must be taken when using these cells as a model for studying purine and pyrimidine metabolism of adult myofibers.  相似文献   

6.
The assimilation and mutual transformation of exogenous purine and pyrimidine bases and their nucleosides in the known subspecies of F. tularensis have been studied by means of radio-labeled compounds. The possibility of using the specific features of the metabolism of these compounds in F. tularensis, established in this study, for taxonomy and differential diagnosis has been demonstrated.  相似文献   

7.
Following long-term labeling with [1-13C]acetate, [2-13C]acetate, 13CO2, H13COOH, or 13CH3OH, NMR spectroscopy was used to determine the labeling patterns of the purified ribonucleosides of Methanospirillum hungatei, Methanococcus voltae, Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanosarcina barkeri and Methanobacterium bryantii. Major differences were observed among the methanogens studied, specifically at carbon positions 2 and 8 of the purines, positions at which one-carbon carriers are involved during synthesis. In Methanospirillum hungatei and Methanosarcina barkeri, the labcl at both positions came from carbon atom C-2 of acetate, as predicted from known eubacterial pathways, whereas in Methanococcus voltae and Methanobacterium bryantii both originated from CO2. In Methanosphaera stadtmanae grown in the presence of formate, the C-2 of purines originated exclusively from formate and the C-8 was labeled by the C-2 of acetate. When grown in media devoid of formate, the C-2 of the purine ring originated mainly from the C-2 of acetate and in part from CH3OH. In Methanobrevibacter smithii grown in the presence of formate, C-2 and C-8 of purines were derived from CO2 and/or formate. The labeling patterns obtained for pyrimidines are consistent with the biosynthetic pathways common to eubacteria and eucaryotes.Abbreviations CODH Carbon monoxide dehydrogenase - FH4 tetrahydrofolate - H4MPT tetrahydromethanopterin Issued as NRCC Publication No. 37383  相似文献   

8.
9.
Purine and pyrimidine biosynthesis in higher plants   总被引:5,自引:0,他引:5  
Purine and pyrimidine nucleotides have important functions in a multitude of biochemical and developmental processes during the life cycle of a plant. In higher plants the processes of nucleotide metabolism are poorly understood, but it is in principle accepted that nucleotides are essential constituents of fundamental biological functions. Despite of its significance, higher plant nucleotide metabolism has been poorly explored during the last 10–20 years (Suzuki and Takahashi 1977, Schubert 1986, Wagner and Backer 1992). But considerable progress was made on purine biosynthesis in nodules of ureide producing tropical legumes, where IMP-synthesis plays a dominant role in primary nitrogen metabolism (Atkins and Smith 2000, Smith and Atkins 2002). Besides these studies on tropical legumes, this review emphasises on progress made in analysing the function in planta of genes involved in purine and pyrimidine biosynthesis and their impact on metabolism and development.  相似文献   

10.
Purine and pyrimidine base and nucleoside levels were determined in adult human lumbar (CSF) and plasma by reversed-phase high performance liquid chromatography (HPLC). Guanine, thymine, cytosine and uracil were not detectable (<0.1 M) in human CSF or plasma. Adenine was detectable in plasma (0.3 M) but was not found in CSF (<0.2 M). Hypoxanthine and xanthine levels in CSF were each approximately 2.5 M. Plasma levels of hypoxanthine and xanthine were considerably lower (0.4–0.6 M). Purine and pyrimidine ribouncleosides in human CSF were less than or equal to 0.2 M with the exception of uridine which was present at concentrations of 2–3 M. Although low concentrations of thymidine and deoxyuridine (0.2 M) were present in human plasma, purine and pyrimidine deoxyribonucleosides were less than 0.1 M in human lumbar CSF.  相似文献   

11.
The kinetics of movement of tracer Na into human and dog red cells have been studied. The time courses of these processes and of K transfer were compared with the theoretical time course for saturation of a flat sheet having a resistive surface. The theoretical and the experimental curves when plotted against t½ have a considerable portion which is linear; on the basis of this resemblance the results are interpreted in terms of a permeability constant and an internal diffusion constant. It is supposed that selective adsorption acts to bring about concentration of K in the human cell and that the bulk of the Na of that cell is present in a thin outer region, while the K is in the interior. The action of strophanthin is to remove the usual limit to the Na capacity of the cell and it is proposed that the Na region increases in thickness at the expense of the K region. Omission of K from the medium has a similar result. Na uptake into poisoned cells measured either with tracer or as a net gain has a linear dependence upon t½ after a delay. The permeability of the dog cell to Na is reduced when K is added to the medium; this may be due to the formation of an outer K-rich region which imposes a resistance to Na movement.  相似文献   

12.
Hypoxanthine transport in human erythrocytes   总被引:5,自引:0,他引:5  
  相似文献   

13.
Purine and pyrimidine derivatives in mature pea seeds   总被引:1,自引:1,他引:1       下载免费PDF全文
  相似文献   

14.
Purine and pyrimidine deoxyribonucleoside metabolism was studied in G1 and S phase human thymocytes and compared with that of the more mature T lymphocytes from peripheral blood. Both thymocyte populations have much higher intracellular deoxyribonucleoside triphosphate (dNTP) pools than peripheral blood T lymphocytes. The smallest dNTP pool in S phase thymocytes is dCTP (5.7 pmol/10(6) cells) and the largest is dTTP (48 pmol/10(6) cells), whereas in G1 thymocytes, dATP and dGTP comprise the smallest pools. While both G1 and S phase thymocytes have active deoxyribonucleoside salvage pathways, only S phase thymocytes have significant ribonucleotide reduction activity. We have studied ribonucleotide reduction and deoxyribonucleoside salvage in S phase thymocytes in the presence of extracellular deoxyribonucleosides. Based on these studies, we propose a model for the interaction of deoxyribonucleoside salvage and ribonucleotide reduction in S phase thymocytes. According to this model, extracellular deoxycytidine at micromolar concentrations is efficiently salvaged by deoxycytidine kinase. However, due to feedback inhibition of deoxycytidine kinase by dCTP, the maximal level of dCTP which can be achieved is limited. The salvage of both deoxyadenosine and deoxyguanosine (up to 10(-4) M) is completely inhibited in the presence of micromolar concentrations of deoxycytidine, whereas the salvage of thymidine is unregulated resulting in large increases in dTTP levels. Moreover, significant amounts of the salvaged deoxycytidine is used for dTTP synthesis resulting in further increase of dTTP pools. The accumulated dTTP inhibits the reduction of UDP and CDP while stimulating GDP reduction and subsequently also ADP reduction. The end result of the proposed model is that S phase thymocytes in the presence of a wide range of extracellular deoxyribonucleoside concentrations synthesize their pyrimidine dNTP by the salvage pathway, whereas purine dNTPs are synthesized primarily by ribonucleotide reduction. Using the proposed model, it is possible to predict the relative intracellular dNTP pools found in fresh S phase thymocytes.  相似文献   

15.
Purine and pyrimidine nucleotide metabolism in higher plants   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Equilibrative sugar uptake in human erythrocytes is characterized by a rapid phase, which equilibrates 66% of the cell water, and by a slow phase, which equilibrates 33% of the cell water. This behavior has been attributed to the preferential transport of beta-sugars by erythrocytes (Leitch JM, Carruthers A. Am J Physiol Cell Physiol 292: C974-C986, 2007). The present study tests this hypothesis. The anomer theory requires that the relative compartment sizes of rapid and slow transport phases are determined by the proportions of beta- and alpha-sugar in aqueous solution. This is observed with D-glucose and 3-O-methylglucose but not with 2-deoxy-D-glucose and D-mannose. The anomer hypothesis predicts that the slow transport phase, which represents alpha-sugar transport, is eliminated when anomerization is accelerated to generate the more rapidly transported beta-sugar. Exogenous, intracellular mutarotase accelerates anomerization but has no effect on transport. The anomer hypothesis requires that transport inhibitors inhibit rapid and slow transport phases equally. This is observed with the endofacial site inhibitor cytochalasin B but not with the exofacial site inhibitors maltose or phloretin, which inhibit only the rapid phase. Direct measurement of alpha- and beta-sugar uptake demonstrates that erythrocytes transport alpha- and beta-sugars with equal avidity. These findings refute the hypothesis that erythrocytes preferentially transport beta-sugars. We demonstrate that biphasic 3-O-methylglucose equilibrium exchange kinetics refute the simple carrier hypothesis for protein-mediated sugar transport but are compatible with a fixed-site transport mechanism regulated by intracellular ATP and cell shape.  相似文献   

18.
19.
Adenine, guanine, and hypoxanthine were rapidly incorporated into the acid-soluble nucleotide pool and nucleic acids by wild type Novikoff cells. Incorporation followed normal Michaelis-Menten kinetics, but the following evidence indicates that specific transport processes precede the phosphoribosyltransferase reactions and are the rate-limiting step in purine incorporation by whole cells. Cells of an azaguanine-resistant subline of Novikoff cells which lacked hypoxanthine-guanine phosphoribosyltransferase activity and failed to incorporate guanine or hypoxanthine into the nucleotide pool, exhibited uptake of guanine and hypoxanthine by a saturable process. Similarly, wild type cells which had been preincubated in a glucose-free basal medium containing KCN and iodoacetate transported guanine and hypoxanthine normally, although a conversion of these purines to nucleotides did not occur in these cells. The mutant and KCN-iodoacetate treated wild type cells also exhibited countertransport of guanine and hypoxanthine when preloaded with various purines, uracil, and pyrimidine nucleosides. The cells also possess a saturable transport system for uracil although they lack phosphoribosyltransferase activity for uracil. In the absence of phosphoribosylation, none of the substrates was accumulated against a concentration gradient. Thus transport is by facilitated diffusion (nonconcentrative transport). Furthermore, the apparent Km values for purine uptake by untreated wild type and azaguanine-resistant cells were higher and the apparent Vmax values were lower than those for the corresponding phosphoribosyltransferases...  相似文献   

20.
Outflow of 86Rb, a radioactive analogue of potassium, from human erythrocytes X-irradiated in vitro was studied with the following results. (1) The 86Rb level in the supernatants of irradiated and control cell suspensions reflected mainly 86Rb outflow and much less its active re-uptake. (2) The effect of irradiation on 86Rb outflow was more pronounced at a low temperature (4 degrees C) than at 37 degrees C; the lowest dose of X-radiation exhibiting a significant effect on 86Rb outflow at 4 degrees C was 2.5 Gy. (3) K/Rb exchange did not seem to play an appreciable role in radiation-induced 86Rb outflow. (4) Calcium and its accumulation in irradiated cells was not found to be the cause of the effect of radiation on 86Rb outflow. (5) The effect of radiation on 86Rb outflow was higher in low Na medium but it was not inhibited by bumetanide. Rb/Na counter- or co-transport do not therefore seem to be involved in radiation-induced Rb+ outflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号