首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous and exogenous accumulation of nucleobases was observed when Escherichia coli entered the stationary phase. The onset of the stationary phase was accompanied by excretion of uracil and xanthine. Except for uracil and xanthine, other nucleobases (except for minor amounts of hypoxanthine), nucleosides, and nucleotides (except for cyclic AMP) were not detected in significant amounts in the culture medium. In addition to exogenous accumulation of nucleobases, stationary-phase cells increased the endogenous concentrations of free nucleobases. In contrast to extracellular nucleobases, hypoxanthine was the dominating intracellular nucleobase and xanthine was present only in minor concentrations inside the cells. Excretion of nucleobases was always connected to declining growth rates. It was observed in response to entry into the stationary phase independent of the initial cause of the cessation of cell growth (e.g., starvation for essential nutrients). In addition, transient accumulation of exogenous nucleobases was observed during perturbations of balanced growth conditions such as energy source downshifts. The nucleobases uracil and xanthine are the final breakdown products of pyrimidine (uracil and cytosine) and purine (adenine and guanine) bases, respectively. Hypoxanthine is the primary degradation product of adenine, which is further oxidized to xanthine. The endogenous and exogenous accumulation of these nucleobases in response to entry into the stationary phase is attributed to degradation of rRNA.  相似文献   

2.
Rapid kinetic techniques were employed to measure the transport of adenine in adenine phosphoribosyltransferase-deficient L929 and Chinese hamster ovary (CHO) cells in zero-trans entry and exit and equilibrium exchange procedures. The kinetic parameters of transport were computed by fitting appropriate integrated rate equations to time courses of transmembrane equilibration of radiolabeled adenine. Adenine transport conformed to the simple carrier model with directional symmetry and equal mobility of loaded and empty carrier. The Michaelis-Menten constants and maximum velocities for various strains of L929 cells fell between 2.3 and 3.5 mM and 90 and 150 pmol/microliters of cell water per s, respectively, values similar to those previously reported for CHO and Novikoff hepatoma cells. The corresponding values for hypoxanthine transport in L929 cells were 413 microM and 16 pmol/microliters of cell water per s. Adenine transport velocities were directly proportional to adenine concentrations between 0.03 and 50 microM in both CHO and Novikoff cells. The results indicate that adenine is transported in these cells by a single, low-affinity, high-capacity transporter. Adenine transport was inhibited by hypoxanthine in some cell strains, but not in others. Adenine also rapidly bound to L929 cells in a saturable manner (KD = 18 microM), presumably to the cell surface (about 3 X 10(7) sites per cell).  相似文献   

3.
Nucleoside and nucleobase transport and metabolism were measured in ATP-depleted and normal Aedes albopictus mosquito cells (line C-7-10) by rapid kinetic techniques. The cells possess a facilitated diffusion system for nucleosides, which in its broad substrate specificity and kinetic properties resembles that present in many types of mammalian cells. The Michaelis-Menten constant for uridine transport at 28 degrees C is about 180 microM. However, the nucleoside transporter of the mosquito cells is resistant to inhibition by nmolar concentrations of nitrobenzylthioinosine and the cells lack high affinity nitrobenzylthioinosine binding sites. The cells also possess an adenine transporter, which is distinct from the nucleoside transporter. They lack, however, a hypoxanthine transport system and are deficient in hypoxanthine phosphoribosyltransferase activity, which explains their failure to efficiently salvage hypoxanthine from the medium. The cells possess uridine and thymidine phosphorylase activities and, in contrast to cultured mammalian cells, efficiently convert uracil to nucleotides. An adenosine-resistant variant (CAE-3-6) of the C-7-10 cell line is devoid of significant nucleoside transport activity but transports adenine normally. Residual entry of various nucleosides into these cells and of hypoxanthine and cytosine into wild type and mutant cells is strictly non-mediated. The rate of permeation of various nucleosides and of hypoxanthine into the CAE-3-6 cells is related to their hydrophobicity. Uridine permeation into CAE-3-6 cells exhibits an activation energy of about 20 kcal/mol. At high uridine concentrations permeation is sufficiently rapid to partly overcome the limitation in nucleoside salvage imposed by the nucleoside transport defect in these cells.  相似文献   

4.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

5.
Uptake of adenine, hypoxanthine and uracil by an uncA strain of Escherichia coli is inhibited by uncouplers or when phosphate in the medium is replaced by less than 1 mM-arsenate, indicating a need for both a protonmotive force and phosphorylated metabolites. The rate of uptake of adenine or hypoxanthine was not markedly affected by a genetic deficiency of purine nucleoside phosphorylase. In two mutants with undetected adenine phosphoribosyltransferase, the rate of adenine uptake was about 30% of that in their parent strain, and evidence was obtained to confirm that adenine had then been utilized via purine nucleoside phosphorylase. In a strain deficient in both enzymes adenine uptake was about 1% of that shown by wild-type strains. Uptake of hypoxanthine was similarly limited in a strain lacking purine nucleoside phosphorylase, hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase. Deficiency of uracil phosphoribosyltransferase severely limits uracil uptake, but the defect can be circumvented by addition of inosine, which presumably provides ribose 1-phosphate for reversal of uridine phosphorylase. The results indicate that there are porter systems for adenine, hypoxanthine and uracil dependent on a protonmotive force and facilitated by intracellular metabolism of the free bases.  相似文献   

6.
Nucleoside and nucleobase transporters are important for salvage of purines and pyrimidines and for transport of their analog drugs into cells. However, the pathways for nucleobase translocation in mammalian cells are not well characterized. We identified an Na-independent purine-selective nucleobase/nucleoside transport system in the nucleoside transporter-deficient PK15NTD cells. This transport system has 1,000-fold higher affinity for nucleobases than nucleosides with K(m) values of 2.5 +/- 0.7 microM for [(3)H]adenine, 6.4 +/- 0.5 microM for [(3)H]guanine, 1.1 +/- 0.1 mM for [(3)H]guanosine, and 4.2 +/- 0.5 mM [(3)H]adenosine. The uptake of [(3)H]guanine (0.05 microM) was inhibited by other nucleobases and nucleobase analog drugs (at 0.5-1 mM in the order of potency): 6-mercaptopurine = thioguanine = guanine > adenine > thymine = fluorouracil = uracil. Cytosine and methylcytosine had no effect. Nucleoside analog drugs with modification at 2' and/or 5 positions (all at 1 mM) were more potent than adenosine in competing the uptake of [(3)H]guanine: 2-chloro-2'-deoxyadenosine > 2-chloroadenosine > 2'3'-dideoxyadenosine = 2'-deoxyadenosine > 5-deoxyadenosine > adenosine. 2-Chloro-2'-deoxyadenosine and 2-chloroadenosine inhibited [(3)H]guanine uptake with IC(50) values of 68 +/- 5 and 99 +/- 10 microM, respectively. The nucleobase/nucleoside transporter was resistant to nitrobenzylthioinosine {6-[(4-nitrobenzyl) thiol]-9-beta-D-ribofuranosylpurine}, dipyridamole, and dilazep, but was inhibited by papaverine, the organic cation transporter inhibitor decynium-22 (IC(50) of approximately 1 microM), and by acidic pH (pH = 5.5). In conclusion, we have identified a mammalian purine-selective nucleobase/nucleoside transporter with high affinity for purine nucleobases. This transporter is potentially important for transporting naturally occurring purines and purine analog drugs into cells.  相似文献   

7.
Peritoneal rat macrophages expressed solely an Na(+)-dependent, concentrative nucleoside transporter, which possesses a single Na(+)-binding site and transports purine nucleosides and uridine but not thymidine or deoxycytidine. The Michaelis-Menten constants for formycin B and Na+ were about 6 microns and 14 mM, respectively, and the estimated Na+:formycin B stoichiometry was 1:1. Rat macrophages accumulated 5 microM formycin B to a steady-state level exceeding that in the medium by about 500-fold during 60 min of incubation at 37 degrees C. Concentrative formycin B transport was resistant to inhibition by nitrobenzylthioinosine, lidoflazine, dilazep and nifedipine, but was slightly inhibited by high concentrations of dipyridamole (greater than 10 microM) and probenecid (greater than 100 microM). Mouse peritoneal macrophages and lines of mouse macrophages and normal rat kidney cells expressed Na(+)-dependent, active nucleoside transport but in addition significant Na(+)-independent, facilitated nucleoside transport. Facilitated nucleoside transport in these cells was sensitive to inhibition by nitrobenzylthioinosine, dilazep and dipyridamole. The presence of these inhibitors greatly enhanced the concentrative accumulation of formycin B by these cells by inhibiting the efflux via the facilitated transporter of the formycin B actively transported into the cells. Whereas rat macrophages lacked high-affinity nitrobenzylthioinosine-binding sites, mouse macrophages and normal rat kidney cells possessed about 10,000 such sites/cell. Rat and mouse erythrocytes, rat lymphocytes, and lines of Novikoff rat hepatoma cells, Chinese hamster ovary cells, Mus dunni cells and embryonic monkey kidney cells expressed only facilitated nucleoside transport.  相似文献   

8.
Transport of adenine and hypoxanthine in human erythrocytes proceeds via two mechanisms: (1) a common carrier for both nucleobases and (2) unsaturable permeation 4-5-fold faster for adenine for hypoxanthine. The latter process was resistant to inactivation by diazotized sulfanilic acid. Carrier mediated transport of both substrates was investigated using zero-trans and equilibrium exchange protocols. Adenine displayed a much higher affinity for the carrier (Km approximately 5-8 microM) than hypoxanthine (Km approximately 90-120 microM) but maximum fluxes at 25 degrees C were generally 5-10-fold lower for adenine (Vmax approximately 0.6-1.4 pmol/microliters per s) than for hypoxanthine (Vmax approximately 9-11 pmol/microliters per s). The carrier behaved symmetrically with respect to influx and efflux for both substrates. Adenine, but not hypoxanthine reduced carrier mobility more than 10-fold. The mobility of the unloaded carrier, calculated from the kinetic data of either hypoxanthine or adenine transport, was the same thus providing further evidence that these substrates share a common transporter and that their membrane transport is adequately described by the alternating conformation model of carrier-mediated transport.  相似文献   

9.
Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.  相似文献   

10.
The zero-trans uptake of purines and pyrimidines was measured in suspensions of Novikoff rat hepatoma, mouse L, P388 mouse leukemia, and Chinese hamster ovary cells by a rapid kinetic technique which allows the determination of uptake time points in intervals as short as 1.5 s. Kinetic parameters for purine/pyrimidine transport were determined by measuring substrate influx into cells in which substrate conversion to nucleotides was negligible either due to lack of the appropriate enzymes or to depletion of the cells of ATP (5'-phosphoribosylpyrophosphate), and by computer fitting exact, integrated rate equations derived for various carrier-mediated transport models directly to zero-trans influx data. The results indicate that different carriers function in the transport of hypoxanthine/guanine, adenine, and uracil with substrate:carrier association constants (K) at 24 degrees C of 300 to 400 muM, 2 to 3 mM, and about 14 mM, respectively, for Novikoff cells. K and Vmax for hypoxanthine transport by L and P388 cells are similar to those for Novikoff cells, but the transport capacity of Chinese hamster ovary cells is much lower and K = 1500 muM. All transport systems are completely symmetrical. Hypoxanthine transport is so rapid that an intracellular concentration of free hypoxanthine (90%) close to that in the medium is attained within 20 to 50 s of incubation at 24 degrees C, at least at extracellular concentrations below K. In cells in which conversion to nucleotides is not blocked free hypoxanthine accumulates intracellularly to steady state levels with equal rapidity and thereafter the rate of hypoxanthine uptake into total cell material is strictly a function of the rate of phosphoribosylation. The low Km systems for hypoxanthine (1 to 9 muM) and adenine (0.2 to 40 muM) uptake detected previously in many types of cells reflect the substrate saturation of the respective phosphoribosyltransferases rather than of the transport system.  相似文献   

11.
Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.4 +/- 1 pmol.microl(-1).s(-1), with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs (K(m) = 96 +/- 37 microM; V(max) = 1.6 +/- 0.3 pmol.microl(-1).s(-1)) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine (K(i) = 19 +/- 7 microM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK(15) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na(+) or H(+). PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.  相似文献   

12.
Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely dependent on transporters to salvage purines from the environment. Only one low-affinity adenosine transporter has been characterized to date. In the present study we report a comprehensive study of purine nucleobase and nucleoside transport by intraerythrocytic P. falciparum parasites. Isolated trophozoites expressed (i) a high-affinity hypoxanthine transporter with a secondary capacity for purine nucleosides, (ii) a separate high-affinity transporter for adenine, (iii) a low-affinity adenosine transporter, and (iv) a low-affinity/high-capacity adenine carrier. Hypoxanthine was taken up with 12-fold higher efficiency than adenosine. Using a parasite clone with a disrupted PfNT1 (P. falciparum nucleoside transporter 1) gene we found that the high-affinity hypoxanthine/nucleoside transport activity was completely abolished, whereas the low-affinity adenosine transport activity was unchanged. Adenine transport was increased, presumably to partly compensate for the loss of the high-affinity hypoxanthine transporter. We thus propose a model for purine salvage in P. falciparum, based on the highly efficient uptake of hypoxanthine by PfNT1 and a high capacity for purine nucleoside uptake by a lower affinity carrier.  相似文献   

13.
The blood-brain barrier permeability to certain 14-C-labelled purine and pyrimidine compounds was studied by simultaneous injection in conjunction with two reference isotopes into the rat common carotid artery and decapitation 15s later. The amount of 14-C-labelled base or nucleoside remaining in brain was expressed in relation to 3-H2O (a highly diffusible internal standard) and 113m-In-labelled EDTA (an essentially non-diffusible internal standard). Of the 17 compounds tested, measurable, saturable uptakes were established for adenine, adenosine, guanosine, inosine and uridine. Two independent transport systems in the rat blood-brain barrier were defined. One transported adenine (Km equals 0.027 mM) and could be inhibited with hypoxanthine. Adenosine (Km equals 0.018 mM), guanosine, inosine and uridine all cross-inhibit, defining a second independent nucleoside carrier system. Adenosine inhibited [14-D]uridine uptake more effectively than did uridine, suggesting a weaker affinity of uridine for this nucleoside carrier.  相似文献   

14.
Purine nucleobase transport in the intraerythrocytic malaria parasite   总被引:2,自引:0,他引:2  
Hypoxanthine, a nucleobase, serves as the major source of the essential purine group for the intraerythrocytic malaria parasite. In this study we have measured the uptake of hypoxanthine, and that of the related purine nucleobase adenine, by mature blood-stage Plasmodium falciparum parasites isolated from their host cells by saponin-permeabilisation of the erythrocyte and parasitophorous vacuole membranes. The uptake of both [3H]hypoxanthine and [3H]adenine was comprised of at least two components; in each case there was a rapid equilibration of the radiolabel between the intra- and extracellular solutions via a low-affinity transport mechanism, and an accumulation of radiolabel (such that the estimated intracellular concentration exceeded the extracellular concentration) via a higher-affinity process. The uptake of [3H]adenine was studied in more detail. The rapid, low-affinity equilibration of [3H]adenine between the intra-and extracellular solution was independent of the energy status of the parasite whereas the higher-affinity accumulation of the radiolabel was ATP-dependent. A kinetic analysis of adenine uptake revealed that the low-affinity (equilibrative) process had a Km of approximately 1.2mM, similar to the value of 0.82 mM estimated here (using the Xenopus laevis oocyte expression system) for the Km for the transport of adenine by PfENT1, a parasite-encoded member of the 'equilibrative nucleoside/nucleobase transporter' family. The results indicate that nucleobases enter the intraerythrocytic parasite via a rapid, equilibrative process that has kinetic characteristics similar to those of PfENT1.  相似文献   

15.
Purine and pyrimidine base and nucleoside levels were measured in adult rabbit cisternal CSF and plasma by reversed-phase high-performance liquid chromatography. The concentrations of bases, nucleosides, and nucleoside phosphates were similar in plasma and CSF except for the adenosine phosphates and uracil which were higher in the plasma. In plasma and CSF, adenosine levels were low (0.12 microM) and guanosine, deoxyadenosine, deoxyguanosine, and deoxyinosine were not detectable (less than 0.1 microM); inosine and xanthine concentrations were 1-2 microM and hypoxanthine concentrations were approximately 5 microM; uridine (approximately 8 microM), cytidine (2-3 microM), and thymidine, deoxyuridine, and deoxycytidine (0.5-1.4 microM) were easily detectable. In both plasma and CSF, guanine, and thymine were undetectable (less than 0.1 microM), adenine and cytosine were less than 0.2 microM, but uracil was present (greater than 1 microM). Adenosine, inosine, and guanosine phosphates were also detectable at low concentrations in CSF and plasma. These results are consistent with the hypothesis that purine deoxyribonucleosides are synthesized in situ in the adult rabbit brain. In contrast, pyrimidine deoxyribonucleosides and ribonucleosides, and purine and pyrimidine bases are available in the CSF for use by the brain.  相似文献   

16.
The presence of an uptake mechanism for uracil in procyclic forms of the protozoan parasite Trypanosoma brucei brucei was investigated. Uptake of [3H]uracil at 22 degrees C was rapid and saturable and appeared to be mediated by a single high-affinity transporter, designated U1, with an apparent Km of 0.46 +/- 0.09 microM and a Vmax of 0.65 +/- 0.08 pmol x (10(7) cells)(-1) x s(-1). [3H]Uracil uptake was not inhibited by a broad range of purine and pyrimidine nucleosides and nucleobases (concentrations up to 1 mM), with the exception of uridine, which acted as an apparent weak inhibitor (Ki value of 48 +/- 15 microM). Similarly, most chemical analogues of uracil, such as 5-chlorouracil, 3-deazauracil, and 2-thiouracil, had little or no affinity for the U1 carrier. Only 5-fluorouracil was found to be a relatively potent inhibitor of uracil uptake (Ki = 3.2 +/- 0.4 microM). Transport of uracil was independent of extracellular sodium and potassium gradients, as replacement of NaCl in the assay buffer by N-methyl-D-glucamine, KCl, LiCl, CsCl, or RbCl did not affect initial rates of transport. However, the proton ionophore carbonyl cyanide chlorophenylhydrazone inhibited up to 70% of [3H]uracil flux. These data show that uracil uptake in T. b. brucei procyclics is mediated by a single high-affinity transporter with high substrate selectivity and are consistent with a nucleobase-H+-symporter model for this carrier.  相似文献   

17.
Leishmania major and all other parasitic protozoa are unable to synthesize purines de novo and are therefore reliant upon uptake of preformed purines from their hosts via nucleobase and nucleoside transporters. L. major expresses two nucleobase permeases, NT3 that is a high affinity transporter for purine nucleobases and NT4 that is a low affinity transporter for adenine. nt3((-/-)) null mutant promastigotes were unable to replicate in medium containing 10 microM hypoxanthine, guanine, or xanthine and replicated slowly in 10 microM adenine due to residual low affinity uptake of that purine. The NT3 transporter mediated the uptake of the anti-leishmanial drug allopurinol, and the nt3((-/-)) mutants were resistant to killing by this drug. Expression of the NT3 permease was profoundly downregulated at the protein but not the mRNA level in stationary phase compared with logarithmic phase promastigotes. The nt4((-/-)) null mutant was quantitatively impaired in survival within murine bone marrow-derived macrophages. Extensive efforts to generate an nt3((-/-))/nt4((-/-)) dual null mutant were not successful, suggesting that one of the two nucleobase permeases must be retained for robust growth of the parasite. The phenotypes of these null mutants underscore the importance of purine nucleobase transporters in the Leishmania life cycle and pharmacology.  相似文献   

18.
The protozoan parasite Toxoplasma gondii depends upon salvaging the purines that it requires. We have re-analysed purine transport in T. gondii and identified novel nucleoside and nucleobase transporters. The latter transports hypoxanthine (TgNBT1; K(m)=0.91+/-0.19 microM) and is inhibited by guanine and xanthine: it is the first high affinity nucleobase transporter to be identified in an apicomplexan parasite. The previously reported nucleoside transporter, TgAT1, is low affinity with K(m) values of 105 and 134 microM for adenosine and inosine, respectively. We have now identified a second nucleoside transporter, TgAT2, which is high affinity and inhibited by adenosine, inosine, guanosine, uridine and thymidine (K(m) values 0.28-1.5 microM) as well as cytidine (K(i)=32 microM). TgAT2 also recognises several nucleoside analogues with therapeutic potential. We have investigated the basis for the broad specificity of TgAT2 and found that hydrogen bonds are formed with the 3' and 5' hydroxyl groups and that the base groups are bound through H-bonds with either N3 of the purine ring or N(3)H of the pyrimidine ring, and most probably pi-pi-stacking as well. The identification of these high affinity purine nucleobase and nucleoside transporters reconciles for the first time the low abundance of free nucleosides and nucleobases in the intracellular environment with the efficient purine salvage carried out by T. gondii.  相似文献   

19.
Genetic deficiencies in the nucleoside transport function markedly altered the abilities of cultured mutant S49 T lymphoblasts to transport, incorporate, and salvage exogenous hypoxanthine. The concentrations of exogenous hypoxanthine required to reverse azaserine toxicity and replenish azaserine-depleted nucleoside triphosphate pools in AE1 cells, a nucleoside transport-deficient clone, were about 10-fold higher than those required for wild type cells. In a similar fashion, guanine could reverse mycophenolic acid toxicity in wild type but not in AE1 cells. Surprisingly, a second nucleoside transport-deficient clone, 80-5D2, which had lost 80-90% of its ability to transport nucleosides, required lower hypoxanthine concentrations than the wild type parent to reverse these azaserine-mediated effects. The addition of submicromolar concentrations of either p-nitrobenzylthioinosine or dipyridamole, two potent inhibitors of nucleoside transport, to wild type cells mimicked the phenotype of the AE1 cells with respect to hypoxanthine. AE1 cells or p-nitrobenzylthioinosine-treated wild type cells could only transport hypoxanthine at 10-25% the rate of untreated wild type cells, whereas 80-5D2 cells could transport hypoxanthine more efficiently. Adenine transport was also diminished in AE1 and FURD-80-3-6 cells, but not to sufficiently low levels to interfere with their ability to salvage adenine to overcome azaserine toxicity. These studies on S49 cells altered in their nucleoside transport capacity provide powerful genetic evidence that purine nucleobases share a common transport function with nucleosides in these mammalian T lymphoblasts.  相似文献   

20.
Acyclovir transport into human erythrocytes   总被引:2,自引:0,他引:2  
The mechanism of transport of the antiviral agent acyclovir (ACV) into human erythrocytes has been investigated. Initial velocities of ACV influx were determined with an "inhibitor-stop" assay that used papaverine to inhibit ACV influx rapidly and completely. ACV influx was nonconcentrative and appeared to be rate-saturable with a Km of 260 +/- 20 microM (n = 8). However, two lines of evidence indicate that ACV permeates the erythrocyte membrane by means other than the nucleoside transport system: 1) potent inhibitors (1.0 microM) of nucleoside transport (dipyridamole, 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and dilazep) had little (less than 8% inhibition) or no effect upon the influx of 5.0 microM ACV; and 2) a 100-fold molar excess of several purine and pyrimidine nucleosides had no inhibitory effect upon the influx of 1.0 microM ACV. However, ACV transport was inhibited competitively by adenine (Ki = 9.5 microM), guanine (Ki = 25 microM), and hypoxanthine (Ki = 180 microM). Conversely, ACV was a competitive inhibitor (Ki = 240-280 microM) of the transport of adenine (Km = 13 microM), guanine (Km = 37 microM), and hypoxanthine (Km = 180 microM). Desciclovir and ganciclovir, two compounds related structurally to ACV, were also found to be competitive inhibitors of acyclovir influx (Ki = 1.7 and 1.5 mM, respectively). These results indicate that ACV enters human erythrocytes chiefly via the same nucleobase carrier that transports adenine, guanine, and hypoxanthine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号