首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

2.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.  相似文献   

3.
Myosin IIIA is expressed in photoreceptor cells and thought to play a critical role in phototransduction processes, yet its function on a molecular basis is largely unknown. Here we clarified the kinetic mechanism of the ATPase cycle of human myosin IIIA. The steady-state ATPase activity was markedly activated approximately 10-fold with very low actin concentration. The rate of ADP off from actomyosin IIIA was 10 times greater than the overall cycling rate, thus not a rate-determining step. The rate constant of the ATP hydrolysis step of the actin-dissociated form was very slow, but the rate was markedly accelerated by actin binding. The dissociation constant of the ATP-bound form of myosin IIIA from actin is submicromolar, which agrees well with the low K(actin). These results indicate that ATP hydrolysis predominantly takes place in the actin-bound form for actomyosin IIIA ATPase reaction. The obtained K(actin) was much lower than the previously reported one, and we found that the autophosphorylation of myosin IIIA dramatically increased the K(actin), whereas the V(max) was unchanged. Our kinetic model indicates that both the actin-attached hydrolysis and the P(i) release steps determine the overall cycle rate of the dephosphorylated form. Although the stable steady-state intermediates of actomyosin IIIA ATPase reaction are not typical strong actin-binding intermediates, the affinity of the stable intermediates for actin is much higher than conventional weak actin binding forms. The present results suggest that myosin IIIA can spend a majority of its ATP hydrolysis cycling time on actin.  相似文献   

4.
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region.  相似文献   

5.
Lin T  Greenberg MJ  Moore JR  Ostap EM 《Biochemistry》2011,50(11):1831-1838
myo1c is a member of the myosin superfamily that has been proposed to function as the adaptation motor in vestibular and auditory hair cells. A recent study identified a myo1c point mutation (R156W) in a person with bilateral sensorineural hearing loss. This mutated residue is located at the start of the highly conserved switch 1 region, which is a crucial element for the binding of nucleotide. We characterized the key steps on the ATPase pathway at 37 °C using recombinant wild-type (myo1c(3IQ)) and mutant myo1c (R156W-myo1c(3IQ)) constructs that consist of the motor domain and three IQ motifs. The R156W mutation only moderately affects the rates of ATP binding, ATP-induced actomyosin dissociation, and ADP release. The actin-activated ATPase rate of the mutant is inhibited >4-fold, which is likely due to a decrease in the rate of phosphate release. The rate of actin gliding, as measured by the in vitro motility assay, is unaffected by the mutation at high myosin surface densities, but the rate of actin gliding is substantially reduced at low surface densities of R156W-myo1c(3IQ). We used a frictional loading assay to measure the affect of resisting forces on the rate of actin gliding and found that R156W-myo1c(3IQ) is less force-sensitive than myo1c(3IQ). Taken together, these results indicate that myo1c with the R156W mutation has a lower duty ratio than the wild-type protein and motile properties that are less sensitive to resisting forces.  相似文献   

6.
Shaw MA  Ostap EM  Goldman YE 《Biochemistry》2003,42(20):6128-6135
N-Benzyl-p-toluenesulfonamide (BTS) is a small organic molecule that specifically inhibits the contraction of fast skeletal muscle fibers. To determine the mechanism of inhibition by BTS, we performed a kinetic analysis of its effects on the elementary steps of the actomyosin subfragment-1 ATPase cycle. BTS decreases the steady-state acto-S1 ATPase rate approximately 10-fold and increases the actin concentration for half-maximal activation. BTS primarily affects three of the elementary steps of the reaction pathway. It decreases the rate of P(i) release >20-fold in the absence of actin and >100-fold in the presence of actin. It decreases the rate of S1.ADP dissociation from 3.9 to 0.8 s(-)(1) while decreasing the S1.ADP dissociation constant from 2.3 to 0.8 microM. BTS weakens the apparent affinity of S1.ADP for actin, increasing the K(d) from 7.0 to 29.5 microM. ATP binding to S1, hydrolysis, and the affinity of nucleotide-free S1 for actin are unaffected by BTS. Kinetic modeling indicates that the binding of BTS to myosin depends on actin association/dissociation and on nucleotide state. Our results suggest that the reduction of the acto-S1 ATPase rate is due to the inhibition of P(i) release, and the suppression of tension is due to inhibition of P(i) release in conjunction with the decreased apparent affinity of S1.ADP.P(i) and S1.ADP for actin.  相似文献   

7.
Mutations of myosin VIIA cause deafness in various species from human and mice to Zebrafish and Drosophila. We analyzed the kinetic mechanism of the ATPase cycle of Drosophila myosin VIIA by using a single-headed construct with the entire neck domain. The steady-state ATPase activity (0.06 s(-1)) was markedly activated by actin to yield V(max) and K(ATPase) of 1.72 s(-1) and 3.2 microm, respectively. The most intriguing finding is that the ATP hydrolysis predominantly takes place in the actin-bound form (actin-attached hydrolysis) for the actomyosin VIIA ATPase reaction. The ATP hydrolysis rate was much faster for the actin-attached form than the dissociated form, in contrast to other myosins reported so far. Both the ATP hydrolysis step and the phosphate release step were significantly faster than the entire ATPase cycle rate, thus not rate-determining. The rate of ADP dissociation from actomyosin VIIA was 1.86 s(-1), which was comparable with the overall ATPase cycle rate, thus assigned to be a rate-determining step. The results suggest that Drosophila myosin VIIA spends the majority of the ATPase cycle in an actomyosin.ADP form, a strong actin binding state. The duty ratio calculated from our kinetic model was approximately 0.9. Therefore, myosin VIIA is classified to be a high duty ratio motor. The present results suggested that myosin VIIA can be a processive motor to serve cargo trafficking in cells once it forms a dimer structure.  相似文献   

8.
We have performed a detailed biochemical kinetic and spectroscopic study on a recombinant myosin X head construct to establish a quantitative model of the enzymatic mechanism of this membrane-bound myosin. Our model shows that during steady-state ATP hydrolysis, myosin X exhibits a duty ratio (i.e. the fraction of the cycle time spent strongly bound to actin) of around 16%, but most of the remaining myosin heads are also actin-attached even at moderate actin concentrations in the so-called "weak" actin-binding states. Contrary to the high duty ratio motors myosin V and VI, the ADP release rate constant from actomyosin X is around five times greater than the maximal steady-state ATPase activity, and the kinetic partitioning between different weak actin-binding states is a major contributor to the rate limitation of the enzymatic cycle. Two different ADP states of myosin X are populated in the absence of actin, one of which shows very similar kinetic properties to actomyosin.ADP. The nucleotide-free complex of myosin X with actin shows unique spectral and biochemical characteristics, indicating a special mode of actomyosin interaction.  相似文献   

9.
Myosin V is a cellular motor protein, which transports cargos along actin filaments. It moves processively by 36-nm steps that require at least one of the two heads to be tightly bound to actin throughout the catalytic cycle. To elucidate the kinetic mechanism of processivity, we measured the rate of product release from the double-headed myosin V-HMM using a new ATP analogue, 3'-(7-diethylaminocoumarin-3-carbonylamino)-3'-deoxy-ATP (deac-aminoATP), which undergoes a 20-fold increase in fluorescence emission intensity when bound to the active site of myosin V (Forgacs, E., Cartwright, S., Kovács, M., Sakamoto, T., Sellers, J. R., Corrie, J. E. T., Webb, M. R., and White, H. D. (2006) Biochemistry 45, 13035-13045). The kinetics of ADP and deac-aminoADP dissociation from actomyosin V-HMM, following the power stroke, were determined using double-mixing stopped-flow fluorescence. These used either deac-aminoATP as the substrate with ADP or ATP chase or alternatively ATP as the substrate with either a deac-aminoADP or deac-aminoATP chase. Both sets of experiments show that the observed rate of ADP or deac-aminoADP dissociation from the trail head of actomyosin V-HMM is the same as from actomyosin V-S1. The dissociation of ADP from the lead head is decreased by up to 250-fold.  相似文献   

10.
The [Mg(2+)] dependence of ADP binding to myosin V and actomyosin V was measured from the fluorescence of mantADP. Time courses of MgmantADP dissociation from myosin V and actomyosin V are biphasic with fast observed rate constants that depend on the [Mg(2+)] and slow observed rate constants that are [Mg(2+)]-independent. Two myosin V-MgADP states that are in reversible equilibrium, one that exchanges nucleotide and cation slowly (strong binding) and one that exchanges nucleotide and cation rapidly (weak binding), account for the data. The two myosin V-MgADP states are of comparable energies, as indicated by the relatively equimolar partitioning at saturating magnesium. Actin binding lowers the affinity for bound Mg(2+) 2-fold but shifts the isomerization equilibrium approximately 6-fold to the weak ADP binding state, lowering the affinity and accelerating the overall rate of MgADP release. Actin does not weaken the affinity or accelerate the release of cation-free ADP, indicating that actin and ADP binding linkage is magnesium-dependent. Myosin V and myosin V-ADP binding to actin was assayed from the quenching of pyrene actin fluorescence. Time courses of myosin V-ADP binding and release are biphasic, consistent with the existence of two (weak and strong) quenched pyrene actomyosin V-ADP conformations. We favor a sequential mechanism for actomyosin V dissociation with a transition from strong to weak actin-binding conformations preceding dissociation. The data provide evidence for multiple myosin-ADP and actomyosin-ADP states and establish a kinetic and thermodynamic framework for defining the magnesium-dependent coupling between the actin and nucleotide binding sites of myosin.  相似文献   

11.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

12.
Distinguishing the cellular functions carried out by enzymes of highly similar structure would be simplified by the availability of isozyme-selective inhibitors. To determine roles played by individual members of the large myosin superfamily, we designed a mutation in myosin's nucleotide-binding pocket that permits binding of adenine nucleotides modified with bulky N(6) substituents. Introduction of this mutation, Y61G in rat myosin-Ibeta, did not alter the enzyme's affinity for ATP or actin and actually increased its ATPase activity and actin-translocation rate. We also synthesized several N(6)-modified ADP analogs that should bind to and inhibit mutant, but not wild-type, myosin molecules. Several of these N(6)-modified ADP analogs were more than 40-fold more potent at inhibiting ATP hydrolysis by Y61G than wild-type myosin-Ibeta; in doing so, these analogs locked Y61G myosin-Ibeta tightly to actin. N(6)-(2-methylbutyl) ADP abolished actin filament motility mediated by Y61G, but not wild-type, myosin-Ibeta. Furthermore, a small fraction of inhibited Y61G molecules was sufficient to block filament motility mediated by mixtures of wild-type and Y61G myosin-Ibeta. Introduction of Y61G myosin-Ibeta molecules into a cell should permit selective inhibition by N(6)-modified ADP analogs of cellular processes dependent on myosin-Ibeta.  相似文献   

13.
Myosin VIIA was cloned from rat kidney, and the construct (M7IQ5) containing the motor domain, IQ domain, and the coiled-coil domain as well as the full-length myosin VIIA (M7full) was expressed. The M7IQ5 contained five calmodulins. Based upon native gel electrophoresis and gel filtration, it was found that M7IQ5 was single-headed, whereas M7full was two-headed, suggesting that the tail domain contributes to form the two-headed structure. M7IQ5 had Mg(2+)-ATPase activity that was markedly activated by actin with K(actin) of 33 microm and V(max) of 0.53 s(-1) head(-1). Myosin VIIA required an extremely high ATP concentration for ATPase activity, ATP-induced dissociation from actin, and in vitro actin-translocating activity. ADP markedly inhibited the actin-activated ATPase activity. ADP also significantly inhibited the ATP-induced dissociation of myosin VIIA from actin. Consistently, ADP decreased K(actin) of the actin-activated ATPase. ADP decreased the actin gliding velocity, although ADP did not stop the actin gliding even at high concentration. These results suggest that myosin VIIA has slow ATP binding or low affinity for ATP and relatively high affinity for ADP. The directionality of myosin VIIA was determined by using the polarity-marked dual fluorescence-labeled actin filaments. It was found that myosin VIIA is a plus-directed motor.  相似文献   

14.
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.  相似文献   

15.
Caldesmon is a component of smooth muscle thin filaments that inhibits the actomyosin ATPase via its interaction with actin-tropomyosin. We have performed a comprehensive transient kinetic characterization of the actomyosin ATPase in the presence of smooth muscle caldesmon and tropomyosin. At physiological ratios of caldesmon to actin (1 caldesmon/7 actin monomers) actomyosin ATPase is inhibited by about 75%. Inhibitory caldesmon concentrations had little effect upon the rate of S1 binding to actin, actin-S1 dissociation by ATP, and dissociation of ADP from actin-S1 x ADP; however the rate of phosphate release from the actin-S1 x ADP x P(i) complex was decreased by more than 80%. In addition the transient of phosphate release displayed a lag of up to 200 ms. The presence of a lag phase indicates that a step on the pathway prior to phosphate release has become rate-limiting. Premixing the actin-tropomyosin filaments with myosin heads resulted in the disappearance of the lag phase. We conclude that caldesmon inhibition of the rate of phosphate release is caused by the thin filament being switched by caldesmon to an inactive state. The active and inactive states correspond to the open and closed states observed in skeletal muscle thin filaments with no evidence for the existence of a third, blocked state. Taken together these data suggest that at physiological concentrations, caldesmon controls the isomerization of the weak binding complex to the strong binding complex, and this causes the inhibition of the rate of phosphate release. This inhibition is sufficient to account for the inhibition of the steady state actomyosin ATPase by caldesmon and tropomyosin.  相似文献   

16.
We have perturbed myosin nucleotide binding site with magnesium‐, manganese‐, or calcium‐nucleotide complexes, using metal cation as a probe to examine the pathways of myosin ATPase in the presence of actin. We have used transient time‐resolved FRET, myosin intrinsic fluorescence, fluorescence of pyrene labeled actin, combined with the steady state myosin ATPase activity measurements of previously characterized D.discoideum myosin construct A639C:K498C. We found that actin activation of myosin ATPase does not depend on metal cation, regardless of the cation‐specific kinetics of nucleotide binding and dissociation. The rate limiting step of myosin ATPase depends on the metal cation. The rate of the recovery stroke and the reverse recovery stroke is directly proportional to the ionic radius of the cation. The rate of nucleotide release from myosin and actomyosin, and ATP binding to actomyosin depends on the cation coordination number.  相似文献   

17.
We have measured the energetics of ATP and ADP binding to single-headed actomyosin V and VI from the temperature dependence of the rate and equilibrium binding constants. Nucleotide binding to actomyosin V and VI can be modeled as two-step binding mechanisms involving the formation of collision complexes followed by isomerization to states with high nucleotide affinity. Formation of the actomyosin VI-ATP collision complex is much weaker and slower than for actomyosin V. A three-step binding mechanism where actomyosin VI isomerizes between two conformations, one competent to bind ATP and one not, followed by rapid ATP binding best accounts for the data. ADP binds to actomyosin V more tightly than actomyosin VI. At 25 degrees C, the strong ADP-binding equilibria are comparable for actomyosin V and VI, and the different overall ADP affinities arise from differences in the ADP collision complex affinity. The actomyosin-ADP isomerization leading to strong ADP binding is entropy driven at >15 degrees C and occurs with a large, positive change in heat capacity (DeltaC(P) degrees ) for both actomyosin V and VI. Sucrose slows ADP binding and dissociation from actomyosin V and VI but not the overall equilibrium constants for strong ADP binding, indicating that solvent viscosity dampens ADP-dependent kinetic transitions, presumably a tail swing that occurs with ADP binding and release. We favor a mechanism where strong ADP binding increases the dynamics and flexibility of the actomyosin complex. The heat capacity (DeltaC(P) degrees ) and entropy (DeltaS degrees ) changes are greater for actomyosin VI than actomyosin V, suggesting different extents of ADP-induced structural rearrangement.  相似文献   

18.
The ATP hydrolysis rate and shortening velocity of muscle are load-dependent. At the molecular level, myosin generates force and motion by coupling ATP hydrolysis to lever arm rotation. When a laser trap was used to apply load to single heads of expressed smooth muscle myosin (S1), the ADP release kinetics accelerated with an assistive load and slowed with a resistive load; however, ATP binding was mostly unaffected. To investigate how load is communicated within the motor, a glycine located at the putative fulcrum of the lever arm was mutated to valine (G709V). In the absence of load, stopped-flow and laser trap studies showed that the mutation significantly slowed the rates of ADP release and ATP binding, accounting for the ~270-fold decrease in actin sliding velocity. The load dependence of the mutant's ADP release rate was the same as that of wild-type S1 (WT) despite the slower rate. In contrast, load accelerated ATP binding by ~20-fold, irrespective of loading direction. Imparting mechanical energy to the mutant motor partially reversed the slowed ATP binding by overcoming the elevated activation energy barrier. These results imply that conformational changes near the conserved G709 are critical for the transmission of mechanochemical information between myosin's active site and lever arm.  相似文献   

19.
Models for the activation of the myosin subfragment-1 (S-1) ATPase activity by actin describe transitions that occur between kinetic intermediate states during steady state hydrolysis of ATP. These states consist of myosin-nucleotide complexes in rapid equilibrium binding with actin, but steady state measurements of actin binding during hydrolysis lead only to a weighted average of the individual binding constants involved. In the current work, in order to determine the individual binding constants involved in the activation process, we have investigated the presteady state kinetics of the dissociation of actomyosin by ATP. We find that an actin flow artifact appears to dominate the time course of dissociation, and characterization of this artifact reveals that its magnitude rises linearly (approximately) with the concentration of bound S-1. Attempts to subtract the actin flow artifact from the actoS-1 dissociation signal were not entirely successful due at least partially to the transient nature of the bound S-1 concentration in the first few milliseconds. However, further studies reveal that if the order of addition of actin, ATP, and S-1 are varied, the observed light scattering transients are essentially superimposable. One possible explanation of these data is that the binding constants for myosin-ATP and myosin-ADP-Pi to actin are equal. However, it is also possible that the flow artifact is so large that further analysis is precluded. In addition, we show that the actin flow artifact has little effect on the fluorescence measurements of the phosphate burst reported previously. Therefore, the prior interpretation of the fluorescence data remains unchanged.  相似文献   

20.
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号