首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We evaluated 15-hydroxyeicosatetraenoic acid (15-HETE), a major arachidonic acid product of vascular endothelium and leukocytes, for its effect on neovascularization. In a modified Boyden chamber assay, 15-HETE (10−7 M) sitmulated human retinal microvessel endothelial cell migration by 42 ± 10% (mean ± S.E.M., p<0.01). 12-HETE, a major arachidonic acid metabolite of platelets, had no such effect. Further studies in the rabbit corneal pocket assay revealed that 15-HETE stimulated neovascularization . Concentrations at which the effects were observed are within the range generated by several cell types and are achievable in human serum. 15-HETE stimulation of human endothelial cell migration and neovascularization suggests that it may play a role in vasoproliferative disorders.  相似文献   

2.
AIM: We tested the hypothesis that 20-HETE production contributes to platelet derived growth factor (PDGF)-BB stimulated migration of VSMC in a cell culture model. METHODS: Studies were performed with A10 cells which are a rat vascular smooth muscle derived cell line. Migration was determined using a Boyden chamber chemotactic assay. RESULTS: Pre-treatment of cells with two doses of 20-HETE (100 and 500 nM) significantly increased PDGF-BB stimulated VSMC migration by 34-58% of control; whereas, prior incubation of cells with inhibitors of 20-HETE production, 17-ODYA (1-25 M) or HET0016 (100 nM), significantly decreased PDGF-BB stimulated migration by 40-90%. 20-HETE mediated increase in PDGF-BB migration was completely prevented by the 20-HETE antagonist, WIT-002. In order to determine what second messenger pathways are involved in the 20-HETE mediated stimulation of VSM migration, experiments were performed with specific inhibitors of tyrosine kinase (tyrphostin 25, 10 microM), mitogen-activated extracellular signal-regulated kinase (MEK, PD98059, 20 microM and U0126, 10 microM), protein kinase C (Myr-PKC, 50 microM), and phosphoinositide 3-kinases (PI3Ks) (wortmannin, 50 nM). Blockade of MEK and PI3K all abolished the increase in 20-HETE mediated migration. CONCLUSION: 20-HETE stimulates PDGF-mediated VSM migration acting through pathways that involve MEK and PI3K.  相似文献   

3.
5-Hydroxyeicosatetraenoic acid (5-HETE) is an arachidonic acid (AA) metabolite derived from the lipoxygenase pathway which is capable of inducing uterine contractions. The purpose of this study was to determine a). whether 5-HETE concentrations in amniotic fluid increase before or after the onset of labor and b). whether acetylsalicylic acid (ASA) could modulate the production of 5-HETE by human amnion cells. 5-HETE concentrations are increased in amniotic fluid before the onset of labor. Furthermore, ASA treatment as expected inhibited PGE2, but also significantly increased 5-HETE production by amnion cells. 5-HETE concentrations on average increased by greater than 2.5 fold (p < 0.001) in amniotic fluid prior to spontaneous labor when compared with samples obtained from the same patients earlier in gestation and therefore may be important in mechanisms regulating the onset of labor. ASA provokes an increase in 5-HETE biosynthesis by amnion cells: control media 2.60 ± 1.5, ASA treatment alone 5.17 ± 0.20, IL-1β alone 6.39 ± 2.1, and ASA + IL-1β 8.95 ± 1.2 (mean ± SEM) picograms per microgram protein per 16 hours. These findings may explain in part why cyclooxygenase inhibitors are not always successful in treating women with preterm labor.  相似文献   

4.
Tumor cell interaction with the endothelium of the vessel wall is a rate limiting step in metastasis. The fatty acid modulation of this interaction was investigated in low (LM) and high (HM) metastatic B16 amelanotic melanoma (B16a) cells. 12(S)-HETE increased the adhesion of LM cells to endothelium derived from pulmonary microvessels. All other monohydroxy and dihydroxy fatty acids were ineffective. LTB4 induced a modest stimulation but LTC4, LTD4, LTE4 as well as LXA4 and LXB4 were ineffective. The 12(S)-HETE enhanced adhesion of B16a cells was inhibited by pretreatment with 13(S)-HODE but not by 13(R)-, 9(S)-HODE or 13-OXO-ODE. 13(S)-HODE decreased adhesion of HM B16a cells to endothelium. 12(S)-HETE enhanced surface expression of integrin alpha IIb beta 3 and monoclonal antibodies against this integrin but not against alpha 5 beta 1, blocked enhanced but not basal adhesion to endothelium. Intravenous injection of 12(S)-HETE treated LM cells resulted in increased lung colonization (experimental metastasis). This effect was specific for 12(S)-HETE and was inhibited by 13(S)-HODE but not by other HODE's. 12(S)-HETE also enhanced lung colonization by HM cells and 13(S)-HODE decreased lung colonization by HM cells. Our results suggest a highly specific bidirectional modulation of metastatic phenotype and lung colonization by 12(S)-HETE and 13(S)-HODE.  相似文献   

5.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA(1), but not LPA(2), with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium.  相似文献   

6.
The factors controlling recruitment of endogenous and transplanted endothelial progenitor cells (EPC) to areas of neovascularization are largely unknown. In this study, we have examined the possibility that EPC migration and adhesion could be regulated by angiopoietin-2 (Ang2), a soluble ligand expressed by endothelial cells at sites of vessel remodelling and angiogenesis. We show for the first time that Ang2 causes a marked stimulation of EPC migration. This was specific for EPC as the ligand failed to affect endothelial cell migration. Ang2-stimulated EPC migration was inhibited by soluble Tie2 ectodomain. Furthermore, the ligand stimulated adhesion between EPC and endothelial monolayers.  相似文献   

7.
《Life sciences》1993,53(19):PL309-PL314
Capsaicin, a homovanillic acid derivative in plants, has distinct pharmacological effects in vivo, e.g. it depletes primary afferent neurons of substance P and other tachykinins. The effect of capsaicin on the migration of human neutrophils was tested in concentrations ranging from 10−8 M to 10−3 M. In comparison to the control 10−8 M, capsaicin significantly enhanced the migration of PMN cells (CI 1.29; 2P < 0.009) and a peak migration activity was detected with 10−6 M (CI 1.32; 2P < 0.01). With higher concentrations of capsaicin the CI was not significantly changed. These results show that capsaicin, a plant derived neurotoxin, exhibits a migration modifying activity on human neutrophils through a direct mechanism not mediated by neuropeptides. In addition capsaicin (10−7 and 10−5 M) did not affect the luminol-dependent chemiluminescence and therefore does not contribute to a superoxide anion generation in human PMN.  相似文献   

8.
Human endonuclease III (hNTH1), a DNA glycosylase with associated abasic lyase activity, repairs various mutagenic and toxic-oxidized DNA lesions, including thymine glycol. We demonstrate for the first time that the full-length hNTH1 positively cooperates in product formation as a function of enzyme concentration. The protein concentrations that caused cooperativity in turnover also exhibited dimerization, independent of DNA binding. Earlier we had found that the hNTH1 consists of two domains: a well conserved catalytic domain, and an inhibitory N-terminal tail. The N-terminal truncated proteins neither undergo dimerization, nor do they show cooperativity in turnover, indicating that the homodimerization of hNTH1 is specific and requires the N-terminal tail. Further kinetic analysis at transition states reveals that this homodimerization stimulates an 11-fold increase in the rate of release of the final product, an AP-site with a 3'-nick, and that it does not affect other intermediate reaction rates, including those of DNA N-glycosylase or AP lyase activities that are modulated by previously reported interacting proteins, YB-1, APE1, and XPG. Thus, the site of modulating action of the dimer on the hNTH1 reaction steps is unique. Moreover, the high intranuclear (2.3 microM) and cytosolic (0.65 microM) concentrations of hNTH1 determined here support the possibility of in vivo dimerization; indeed, in vivo protein cross-linking showed the presence of the dimer in the nucleus of HeLa cells. Therefore, it is likely that the dimerization of hNTH1 involving the N-terminal tail masks the inhibitory effect of this tail and plays a critical role in its catalytic turnover in the cell.  相似文献   

9.
20-hydroxyeicosatetraenoic acid, a major renal P-450 metabolite of arachidonic acid, has been quantified in human urine using capillary gas chromatography/electron capture negative ion chemical ionization mass spectrometry. The urinary excretion of 20-hydroxyeicosatetraenoic acid was in the low pg/ml range. However, treatment of urine with beta-glucuronidase resulted in a 13- to 28-fold increase in its concentration. This suggests 20-hydroxyeicosatetraenoic acid differs from other eicosanoids in that it is excreted primarily as a glucuronide conjugate.  相似文献   

10.
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a natural inhibitor of pluripotent hematopoietic stem cell proliferation, has been suggested as capable of promoting an angiogenic response. We studied whether Ac-SDKP stimulates endothelial cell proliferation, migration, and tube formation; enhances angiogenic response in the rat cornea after implantation of a tumor spheroid; and increases capillary density in rat hearts with myocardial infarction (MI). In vitro, an immortal BALB/c mouse aortic endothelial 22106 cell line was used to determine the effects of Ac-SDKP on endothelial cell proliferation and migration and tube formation. In vivo, a 9L-gliosarcoma cell spheroid (250-300 microm in diameter) was implanted in the rat cornea and vehicle or Ac-SDKP (800 microg.kg(-1).day(-1) ip) infused via osmotic minipump. Myocardial capillary density was studied in rats with MI given either vehicle or Ac-SDKP. We found that Ac-SDKP 1) stimulated endothelial cell proliferation and migration and tube formation in a dose-dependent manner, 2) enhanced corneal neovascularization, and 3) increased myocardial capillary density. Endothelial cell proliferation and angiogenesis stimulated by Ac-SDKP could be beneficial in cardiovascular diseases such as hypertension and MI. Furthermore, because Ac-SDKP is mainly cleaved by ACE, it may partially mediate the cardioprotective effect of ACE inhibitors.  相似文献   

11.
Mouse brain microvessel endothelial cells convert eicosapentaenoic acid (EPA) to prostaglandin (PG) E3, PGI3, and several hydroxy fatty acid derivatives. Similar types of products are formed by these microvessel endothelial cells from arachidonic acid. The formation of PGI2 and PGE2 is reduced, however, when the brain microvessel endothelial cultures are incubated initially with EPA. Exposure to linolenic or docosahexaenoic acid also decreased the capacity of these microvessel endothelial cells to form PGI2 and PGE2, but the reductions were smaller than those produced by EPA. Like the endothelial cultures, intact mouse brain microvessels convert EPA into eicosanoids, and incubation with EPA reduces the subsequent capacity of the microvessels to produce PGI2 and PGE2. Brain microvessel endothelial cells took up less EPA than arachidonic acid, primarily due to lesser incorporation into the inositol, ethanolamine, and serine glycerophospholipids. By contrast, considerably more EPA than arachidonic acid was incorporated into triglycerides. These findings suggest that the microvessel endothelium may be a site of conversion of EPA to eicosanoids in the brain and that EPA availability can influence the amount of dienoic prostaglandins released by the brain microvasculature. Furthermore, the substantial incorporation of EPA into triglyceride suggests that this neutral lipid may play an important role in the processing and metabolism of EPA in brain microvessels.  相似文献   

12.
Tumor cell interaction with the endothelium of the vessel wall is a rate limiting step in metastasis. The fatty acid modulation of this interaction was investigated in low (LM) and high (HM) metastatic B16 amelanotic melanoma (B16a) cells. 12(S)-HETE increased the adhesion of LM cells to endothelium derived from pulmonary microvessels. All other monohydroxy and dihydroxy fatty acids were ineffective. LTB4 induced a modest stimulation but LTC4, LTD4, LTE4 as well as LXA4 and LXB4 were ineffective. The 12(S)-HETE enhanced adhesion of B16a cells was inhibited by pretreatment with 13(S)-HODE but not by 13(R)-, 9(S)-HODE or 13-OXO-ODE. 13(S)-HODE decreased adhesion of HM B16a cells to endothelium. 12(S)-HETE enhanced surface expression of integrin αIIbβ3 and monoclonal antibodies against this integrin but not against α5β1, blocked enhanced but not basal adhesion to endothelium. Intravenous injection of 12(S)-HETE treated LM cells resulted in increased lung colonization (experimental metastasis). This effect was specific for 12(S)-HETE and was inhibited by 13(S)-HODE but not by other HODE's. 12(S)-HETE also enhanced lung colonization by HM cells and 13(S)-HODE decreased lung colonization by HM cells. Our results suggest a highly specific bidirectional modulation of metastatic phenotype and lung colonization by 12(S)-HETE and 13(S)-HODE.  相似文献   

13.
Actively proliferating human retinal pigment epithelial (RPE) cells grown in tissue culture possess keratin-containing intermediate filaments that react with a combination of AE1 and AE3 anti-keratin monoclonal antibodies. Antibody reactivity is lost, however, from RPE cells as the cell population ceases to proliferate when it approaches confluence and attains morphological characteristics more similar to those in vivo. In contrast, clone 8.13 anti-keratin antibody stains all cells in the culture at all stages of the growth cycle and cell densities. These findings were reflected in vivo using retinal pigment epithelium taken directly from the eye. Normal non-proliferating RPE cells bound 8.13 antibody to cytoskeletal structures, as judged by indirect immunofluorescence, but did not bind AE1/AE3 antibodies. However, proliferating dedifferentiated RPE cells from the vitreous humor of patients with proliferative vitreoretinopathy possess filaments that bind both AE1/AE3 and 8.13 antibodies. Thus it appears that structures detected by AE1/AE3 antibodies only occur in actively growing RPE cells in vitro and in vivo. Keratins produced by RPE cells were identified using Western blotting. Species with molecular masses of 54 (keratin 7), 52 (keratin 8), 42 (keratin 18), and 40 (keratin 19) kiloDaltons were the most abundant in proliferating cultured cells, but cells isolated directly from the eye were found to lack keratin 7 and 19. Keratin 19 was, however, observed in proliferating RPE cells from some patients with proliferative vitreoretinopathy. The latter findings explain the differential staining observed with AE1/AE3 antibodies in cells in culture and isolated directly from the eye since these antibodies interact primarily with keratin 19 which is absent from non-proliferating RPE cells. In contrast to the presence of keratin-containing intermediate filaments in human RPE cells in vivo, there are apparently no detectable vimentin-containing cytoskeletal structures. However, all RPE cells cultured in vitro develop filaments composed of vimentin which persist in cells that have reached confluence.  相似文献   

14.
Hwang J  Kim CW  Son KN  Han KY  Lee KH  Kleinman HK  Ko J  Na DS  Kwon BS  Gho YS  Kim J 《FEBS letters》2004,570(1-3):47-51
CCL15 is a novel human CC chemokine and exerts its biological activities on immune cells through CCR1 and CCR3. Because a number of chemokines induce angiogenesis and endothelial cells express CCR1 and CCR3, we investigated the angiogenic activity of CCL15. Both CCL15(1-92) and N-terminal truncated CCL15(25-92) stimulate the chemotactic endothelial cell migration and differentiation, but CCL15(25-92) is at least 100-fold more potent than CCL15(1-92). Treatment with pertussis toxin (PTX), with anti-CCR1, or with anti-CCR3 antibody inhibits the CCL15(25-92)-induced endothelial cell migration. CCL15(25-92) also stimulates sprouting of vessels from aortic rings and mediates angiogenesis in the chick chorioallantoic membrane assay. Our findings demonstrate that CCL15(25-92) has in vitro and in vivo angiogenic activity, and suggest roles of the chemokine in angiogenesis.  相似文献   

15.
The mechanisms of stimulation of the inactive 5-lipoxygenase in mast/basophil PT-18 cells by microM 15-hydroxyeicosatetraenoic acid (15-HETE) was investigated. Treatment of PT-18 cells with pM 15-[3H]HETE at 4 degrees for 3 h resulted in the cell association of 10% of the ligand: two-thirds was incorporated into cellular lipids and a third was bound to specific 15-HETE cellular binding sites. Binding data analysis indicated a single class of 15-HETE binding sites with a Kd of 162 nM and a Bmax of 7.1 x 10(5) sites/cell. Unlabeled 15-HETE, 12-HETE, and 5,15-diHETE inhibited the binding of 15-[3H]HETE to cells, whereas LTB4 and PGF2 alpha were relatively ineffective. 2.4 microM 15-HETE (unlabeled) prevented 50% 15-[3H]HETE incorporation. Examination of the effects of 15-HETE methyl ester, 12-HETE, 5,15-diHETE, and pertussis toxin on both the 15-HETE-induced 5-lipoxygenase activation and 15-HETE cell association processes indicated a preponderant correlation of this activation process with specific 15-HETE binding rather than 15-HETE incorporation into phospholipids. In addition, 5,15-diHETE itself stimulated the inactive 5-lipoxygenase and eight times more [3H]diHETE was bound to cells than became incorporated into cellular lipids. The results support the involvement of low affinity 15-HETE receptors, rather than 15-HETE incorporation into cellular lipids, in the 15-HETE-induced stimulation of the 5-lipoxygenase in PT-18 cells.  相似文献   

16.
In view of the increasing evidence that a variety of stresses can influence immune responses, the direct effect of adrenocorticotropic hormone on the migration of human monocytes was studied in vitro. ACTH(1–24) significantly increased the number of migrating cells when placed in the same or the opposite compartment of the chemotaxis chamber, maximum activity being obtained at 10−14 and 10−8 M. The results indicate that ACTH(1–24) directly and potently stimulates the migration of human monocytes by means of a chemokinetic effect.  相似文献   

17.
Different molecules are available to recruit new neighboring myogenic cells to the site of regeneration. Formerly called B cell stimulatory factor-1, IL-4 can now be included in the list of motogenic factors. The present report demonstrates that human IL-4 is not required for fusion between mononucleated myoblasts but is required for myotube maturation. In identifying IL-4 as a pro-migratory agent for myogenic cells, these results provide a mechanism which partly explains IL-4 demonstrated activity during differentiation. Among the different mechanisms by which IL-4 might enhance myoblast migration processes, our results indicate that there are implications of some integrins and of three major components of the fibrinolytic system. Indeed, increases in the amount of active urokinase plasminogen activator and its receptor were observed following an IL-4 treatment, while the plasminogen activator inhibitor-1 decreased. Finally, IL-4 did not modify the amount of cell surface alpha5 integrin but increased the presence of beta3 and beta1 integrins. This integrin modulation might favor myogenic cell migration and its interaction with newly formed myotubes. Therefore, IL-4 co-injection with transplanted myoblasts might be an approach to enhance the migration of transplanted cells for the treatment of a damaged myocardium or of a Duchenne Muscular Dystrophy patient.  相似文献   

18.
Induction of antiviral activity and interferon by human placenta ribonucleic acid deaminated with sodium nitrite (NO2-RNA) was studied in vitro and in vitro. (1) Viral multiplication in diploid cells from human kidney (HK cells) was depressed by pretreatment with NO2-RNA, but not by pre-treatment with the original placenta RNA. (2) NO2-RNA showed an interferon-inducing activity in rabbits and mice. (3) NO2-RNA sedimenting in 18 S and 28 S regions showed a higher antiviral activity than that sedimenting in 4 S region.  相似文献   

19.
Fibrillar collagen is the most abundant extracellular matrix (ECM) constituent which maintains the structure of most interstitial tissues and organs, including skin, gut, and breast. Density and spatial alignments of the three-dimensional (3D) collagen architecture define mechanical tissue properties, i.e. stiffness and porosity, which guide or oppose cell migration and positioning in different contexts, such as morphogenesis, regeneration, immune response, and cancer progression. To reproduce interstitial cell movement in vitro with high in vivo fidelity, 3D collagen lattices are being reconstituted from extracted collagen monomers, resulting in the re-assembly of a fibrillar meshwork of defined porosity and stiffness. With a focus on tumor invasion studies, we here evaluate different in vitro collagen-based cell invasion models, employing either pepsinized or non-pepsinized collagen extracts, and compare their structure to connective tissue in vivo, including mouse dermis and mammary gland, chick chorioallantoic membrane (CAM), and human dermis. Using confocal reflection and two-photon-excited second harmonic generation (SHG) microscopy, we here show that, depending on the collagen source, in vitro models yield homogeneous fibrillar texture with a quite narrow range of pore size variation, whereas all in vivo scaffolds comprise a range from low- to high-density fibrillar networks and heterogeneous pore sizes within the same tissue. Future in-depth comparison of structure and physical properties between 3D ECM-based models in vitro and in vivo are mandatory to better understand the mechanisms and limits of interstitial cell movements in distinct tissue environments.  相似文献   

20.
Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole‐body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well‐established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc‐deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high‐fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin‐dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid‐oxidative enzymes was observed in ShcKO BAT. Levels of brown fat‐specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号