首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick and mild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy. The results suggest that Photosystem II (PS II) isolates either as a paired, appressed membrane fragment or as a dimeric PS II-LHC II supercomplex upon mild solubilization of stacked thylakoid membranes or PS II grana membranes, but predominantly as a core monomer upon mild solubilization of unstacked thylakoid membranes. Analysis of paired grana membrane fragments reveals that the number of PS II dimers is strongly reduced in single membranes at the margins of the grana membrane fragments. We suggest that unstacking of thylakoid membranes results in a spontaneous disintegration of the PS II-LHC II supercomplexes into separated PS II core monomers and peripheral light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Ravi Danielsson 《BBA》2009,1787(1):25-442
Membrane vesicles, originating from grana, grana core (appressed grana regions), grana margins and stroma lamellae/end membranes, were analysed by counter current distribution (CCD) using aqueous dextran-polyethylene glycol two-phase systems. Each vesicle population gave rise to distinct peaks in the CCD diagram representing different vesicle subpopulations. The grana vesicles and grana core vesicles each separated into 3 different subpopulations having different chlorophyll a/b ratios and PSI/PSII ratios. Two of the grana core subpopulations had a chlorophyll a/b ratio of 2.0 and PSI/PSII ratio of 0.10 and are among the most PSII enriched thylakoid vesicle preparation obtained so far by a non detergent method. The margin vesicles separated into 3 different populations, with about the same chlorophyll a/b ratios, but different fluorescence emission spectra. The stroma lamellae/end membrane vesicles separated into 4 subpopulations. Plastoglobules, connected to membrane vesicles, were highly enriched in 2 of these subpopulations and it is proposed that these 2 subpopulations originate from stroma lamellae while the 2 others originate from end membranes. Fragmentation and separation analysis shows that the margins of grana constitute a distinct domain of the thylakoid and also allows the estimation of the chlorophyll antenna sizes of PSI and PSII in different thylakoid domains.  相似文献   

3.
The photosynthetic protein complexes in plants are located in the chloroplast thylakoid membranes. These membranes have an ultrastructure that consists of tightly stacked 'grana' regions interconnected by unstacked membrane regions. The structure of isolated grana membranes has been studied here by cryo-electron microscopy. The data reveals an unusual arrangement of the photosynthetic protein complexes, staggered over two tightly stacked planes. Chaotrope treatment of the paired grana membranes has allowed the separation and isolation of two biochemically distinct membrane fractions. These data have led us to an alternative model of the ultrastructure of the grana where segregation exists within the grana itself. This arrangement would change the existing view of plant photosynthesis, and suggests potential links between cyanobacterial and plant photosystem II light harvesting systems.  相似文献   

4.
The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent n-dodecyl-alpha, d-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called C(2)S(2) and C(2)S(2)M supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.  相似文献   

5.
Structural variation in the stroma‐grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter‐grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter‐grana region, referred to hereafter as isolated‐grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG‐type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse‐amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.  相似文献   

6.
The detergent Tween-20 solubilized preferentially portions of the marginal regions of Spinacea oleracea L. thylakoid membranes and, thus, opened the inside of the grana to the external media. Differential centrifugation. following Tween-20 solubilization. enabled separate fractions of grana and stromal-exposed membranes to be isolated. Analysis of Tween-20 solubilized material, after pelleting all membrane material by centrifugation at 100 000 g, revealed polypeptides associated with the coupling factor (CF1) particles, cytochrome b6/f and photosystem II complexes, suggesting that the marginal membranes contain these proteins. Concomitantly, the 100 000 g pellet was depleted in cytochrome b6/f and P700, determined spectroscopically, Thus. our results reveal the margin to be a distinct membrane region, which does not contain the light-harvesting centers of photosystem II (LHC II). The implication of these results, in terms of the energetic interaction of components of granal and stromalexposed membrane regions, is discussed.  相似文献   

7.
Chloroplast membranes contain a light-harvesting pigment-protein complex (LHC) which binds chlorophylls a and b. A mild trypsin digestion of intact thylakoid membranes has been utilized to specifically alter the apparent molecular weights of polypeptides of this complex. The modified membrane preparations were analyzed for altered functional and structural properties. Cation-induced changes in room temperature fluorescence intensity and low temperature chlorophyll fluorescence emission spectra, and cation regulation of the quantum yield of photosystem I and II partial reactions at limiting light were lost following the trypsin-induced alteration of the LHC. Electron microscopy revealed that cations can neither maintain nor promote grana stacking in membranes which have been subjected to mild trypsin treatment. Freeze-fracture analysis of these membranes showed no significant differences in particle density or average particle size of membrane subunits on the EF fracture face; structural features of the modified lamellae were comparable to membranes which had been unstacked in a “low salt” buffer. Digitonin digestion of trypsin-treated membranes in the presence of cations followed by differential centrifugation resulted in a subchloroplast fractionation pattern similar to that observed when control chloroplasts were detergent treated in cation-free medium. We conclude that: (a) the initial action of trypsin at the thylakoid membrane surface of pea chloroplasts was the specific alteration of the LHC polypeptides, (b) the segment of the LHC polypeptides which was altered by trypsin is necessary for cation-mediated grana stacking and cation regulation of membrane subunit distribution, and (c) cation regulation of excitation energy distribution between photosystem I and II involves the participation of polypeptide segments of the LHC which are exposed at the membrane surface.  相似文献   

8.
Over the past five years, the structure, composition and possible functions of membrane raft-like domains on plant plasma membranes (PM) have been described. Proteomic analyses have indicated that a high proportion of proteins associated with detergent-insoluble membranes (DIMs), supposed to contain raft-like domains isolated from the PM, might be involved in signalling pathways. Recently, the dynamic association of specific proteins with the DIM fraction upon environmental stress has been reported. Innovative imaging methods have shown that lateral segregation of lipids and proteins exists at the nanoscale level in the plant PM, correlating detergent insolubility and membrane-domain localization of presumptive raft proteins. These data suggest a role for plant rafts as signal transduction platforms, similar to those documented for mammalian cells.  相似文献   

9.
Efficient photosynthetic energy transduction and its regulation depend on a precise supramolecular arrangement of the plant photosystem II (PSII) complex in grana membranes of chloroplasts. The topography of isolated photosystem II supercomplexes and the supramolecular organization of this complex in grana membrane preparations are visualized by high-resolution atomic force microscopy (AFM) in air in tapping mode with an active feedback control to minimize tip-sample interactions. Systematic comparison between topographic characteristics of the protrusions in atomic force microscopic images and well-established high-resolution and freeze-fracture electron microscopic data shows that the photosystem II organization can be properly imaged by AFM in air. Taking the protruding water-splitting apparatus as a topographic marker for PSII, its distribution and orientation in isolated grana membrane were analyzed. For the latter a new mathematical procedure was established, which revealed a preference for a parallel alignment of PSII that resembles the organization in highly ordered semicrystalline arrays. Furthermore, by analyzing the height of grana membrane stacks, we conclude that lumenal protrusions of adjacent photosystem II complexes in opposing membranes are displaced relative to each other. The functional consequences for lateral migration processes are discussed.  相似文献   

10.
A comparison of bean chloroplasts after being fixed in potassiumpermanganate, osmium, and formaldehyde coupled with negativestaining shows that the general organization of the chloroplastis similar in all cases. However, the mature chloroplasts ofbean vary considerably in the extent and orientation of theinternal membranes—the grana and the interconnecting membranesbetween the grana. The interconnecting membranes are thin, branching,flexuous structures. This is illustrated by serial sectionsand by cross- and face-view sections of osmium- fixed chloroplastsand the best model, which allows for a considerable flexibilityin the orientation of the grana and also describes the thininterconnecting membranes between the grana, is the grana-fretworksystem proposed by Weier (1961). Furthermore, the comparative studies show that the internalregions of grana are separated from the stroma and that thegrana-fretwork systems appear to be a continuous membrane system.This membrane is single along the frets, end compartments, andgranal margins. It is double in the partitions of the granabut separated by a component, possibly a cementing material,which does not stain. It is suggested that this membrane isstructurally similar in the chloroplasts of higher plants, butthat its overall organization may vary from one plant to another.  相似文献   

11.
It has recently been shown that the 30,000 m.w. Rho(D) protein is associated with the membrane skeleton of the human red cell. We have studied the effects of the membrane skeleton on the immunoreactivity of the Rho(D) antigen present in Rho(D)+ membranes. Solubilization of the membranes with the Triton X-100 detergent and centrifugation of the extracts showed that more than 90% of the immunoreactive Rho(D) antigen sedimented with the membrane skeleton structures. The skeleton-bound Rho(D) antigen could be solubilized by disruption of the skeleton in low ionic strength medium. The removal of the membrane skeleton structure before the solubilization of the membranes with detergent resulted in the inactivation of the majority of the Rho(D) antigen. The effect of the membrane skeleton on the stability of the Rho(D) antigen was additionally studied in detergent extracts prepared from native and skeleton-free membranes. The assay of the Rho(D) antigen activity in the extracts showed that the Rho(D) antigen was 100 times more sensitive to the detergent inactivation in skeleton-free membranes than in native membranes. These results indicate that the membrane skeleton is important for stabilizing the immunoreactive form of the Rho(D) protein on the red cell membrane.  相似文献   

12.
The PsbS protein is a critical component in the regulation of non-photochemical quenching (NPQ) in higher plant photosynthesis. Electron microscopy and image analysis of grana membrane fragments from wild type and mutant Arabidopsis plants showed that the semi-crystalline domains of photosystem II supercomplexes were identical in the presence and absence of PsbS. However, the frequency of the domains containing crystalline arrays was increased in the absence of PsbS. Conversely, there was a complete absence of such arrays in the membranes of plants containing elevated amounts of this protein. It is proposed that PsbS controls the macro-organisation of the grana membrane, providing an explanation of its role in NPQ.  相似文献   

13.
The constant proportion of grana and stroma lamellae in plant chloroplasts   总被引:5,自引:0,他引:5  
The relative proportion of stroma lamellae and grana end membranes was determined from electron micrographs of 58 chloroplasts from 21 different plant species. The percentage of grana end membranes varied between 1 and 21% of the total thylakoid membrane indicating a large variation in the size of grana stacks. By contrast the stroma lamellae account for 20.3 ± 2.5 ( sd )% of the total thylakoid membrane. A plot of percentage stroma lamellae against percentage of grana end membranes fits a straight line with a slope of zero showing that the proportion of stroma lamellae is independent of the size of the grana stacks. That stroma lamellae account for about 20% of the thylakoid membrane is in agreement with fragmentation and separation analysis (Gadjieva et al . Biochim. Biophys. Acta 144: 92–100, 1999). Chloroplasts from spinach, grown under high or low light, were fragmented by sonication and separated by countercurrent distribution into two vesicle populations originating from grana and stroma lamellae plus end membranes, respectively. The separation diagrams were very similar lending independent support for the notion that the proportion of stroma lamellae is constant. The results are discussed in relation to the composition and function of the chloroplast in plants grown under different environmental conditions, and in relation to a recent quantitative model for the thylakoid (Albertsson, Trends Plant Sci. 6: 349–354, 2001).  相似文献   

14.
The disruption of a kidney cortex microsomal membrane preparation by a binary, nonionic detergent, was followed by using as markers, the changes in total protein content, and (Na+, K+)-ATPase in a supernatant fraction. Both markers responded similarly to changes in pH, microsome concentration and detergent concentration, but responded differently for time-dependent studies. The (Na+, K+)-ATPase activity was increased 2.2-fold (76.1 mumoles Pi/mg protein/h, 95% ouabain-sensitive) by a single detergent treatment and 3.5-fold (92% ouabain-sensitive) by a sequential detergent treatment. Changes in the critical micelle concentration (cmc) were observed for varying detergent and protein concentrations, which suggest interactions of monomeric detergent with the membrane. The peak of (Na+, K+)-ATPase activity occurred above the cmc which suggests the participation of micelles in releasing the enzyme from the membranes. Hill plots of the protein released as the detergent concentration was varied showed a change in the slope near the cmc indicating a four-fold increase in the binding of detergent to membranes as the detergent concentration is increased above the cmc. These results suggest that the disruption of membranes by detergent involves the binding of detergent monomers to the membrane followed by the formation of co-micelles of the detergent with segments of the membrane to complete the separation process.  相似文献   

15.
The relative molar amounts of glycerolipids are similar in grana and stroma lamellae, as are the ratios of total glycerolipid to weight of membrane protein. However the chlorophyll content relative to protein of grana lamellae is about 40% higher than that of stroma lamellae from the same preparation. Previous reports of chemical composition or enzyme activity based on chlorophyll alone can be highly misleading. The large functional and conformational differences between these two membranes may be related to these differences in pigment content, but are likely to result primarily from qualitative protein differences. The data are in accord with a membrane model in which nonpolar regions of membrane protein bind lipid in fairly constant amounts.  相似文献   

16.
The polypeptide composition of whole thylakoids and membrane subfragments was studied by using a modified two-dimensional gel electrophoresis technique of O'Farrell [J. Biol. Chem. 250, 4007-4021 (1975)]. The modifications were lithium dodecyl sulphate solubilization instead instead of SDS, reverse isofocusing and sensitive silver staining procedure. This high-resolution technique allowed us to separate and identify about 170 polypeptides of thylakoid membranes. After separating grana and stroma thylakoids it was found that both types of lamellae contained nearly equal amounts of polypeptides, but about 70 polypeptides were different in the two preparations. In grana thylakoids, 54 polypeptides out of 95 were found to be mainly present in grana and 31 of them were only present in grana preparations. In stroma membranes, 43 polypeptides out of 99 were mainly present in stroma lamellae and 38 of these polypeptides were exclusively present in stroma lamellae. In a functional photosystem II preparation, 61 individual polypeptides could be distinguished. Most of these polypeptides were present in both grana and stroma lamellae, but 22 of them were more pronounced in grana than in stroma lamellae. 9 polypeptides of photosystem II were distinctly different in grana and stroma lamellae, and these differences may connect closely with the functional differences of photosystem II in the two types of thylakoids.  相似文献   

17.
Protein diffusion and macromolecular crowding in thylakoid membranes   总被引:3,自引:0,他引:3  
The photosynthetic light reactions of green plants are mediated by chlorophyll-binding protein complexes located in the thylakoid membranes within the chloroplasts. Thylakoid membranes have a complex structure, with lateral segregation of protein complexes into distinct membrane regions known as the grana and the stroma lamellae. It has long been clear that some protein complexes can diffuse between the grana and the stroma lamellae, and that this movement is important for processes including membrane biogenesis, regulation of light harvesting, and turnover and repair of the photosynthetic complexes. In the grana membranes, diffusion may be problematic because the protein complexes are very densely packed (approximately 75% area occupation) and semicrystalline protein arrays are often observed. To date, direct measurements of protein diffusion in green plant thylakoids have been lacking. We have developed a form of fluorescence recovery after photobleaching that allows direct measurement of the diffusion of chlorophyll-protein complexes in isolated grana membranes from Spinacia oleracea. We show that about 75% of fluorophores are immobile within our measuring period of a few minutes. We suggest that this immobility is due to a protein network covering a whole grana disc. However, the remaining fraction is surprisingly mobile (diffusion coefficient 4.6 +/- 0.4 x 10(-11) cm(2) s(-1)), which suggests that it is associated with mobile proteins that exchange between the grana and stroma lamellae within a few seconds. Manipulation of the protein-lipid ratio and the ionic strength of the buffer reveals the roles of macromolecular crowding and protein-protein interactions in restricting the mobility of grana proteins.  相似文献   

18.
Four procedures utilizing different detergent and salt conditions were used to isolate oxygen-evolving Photosystem II (PS II) preparations from spinach thylakoid membranes. These PS II preparations have been characterized by freeze-fracture electron microscopy, SDS-polyacrylamide gel electrophoresis, steady-state and pulsed oxygen evolution, 77 K fluorescence, and room-temperature electron paramagnetic resonance. All of the O2-evolving PS II samples were found to be highly purified grana membrane fractions composed of paired, appressed membrane fragments. The lumenal surfaces of the membranes and thus the O2-evolving enzyme complex, are directly exposed to the external environment. Biochemical and biophysical analyses indicated that all four preparations are enriched in the chlorophyll ab-light-harvesting complex and Photosystem II, and depleted to varying degrees in the stroma-associated components, Photosystem I and the CF1-ATPase. The four PS II samples also varied in their cytochrome f content. All preparations showed enhanced stability of oxygen production and oxygen-rate electrode activity compared to control thylakoids, apparently promoted by low concentrations of residual detergent in the PS II preparations. A model is presented which summarizes the effects of the salt and detergent treatments on thylakoid structure and, consequently, on the configuration and composition of the oxygen-evolving PS II samples.  相似文献   

19.
A method for membrane reconstitution from cholate-solubilized microsomal proteins and lipids by a removal of the detergent on a column with charcoal has been developed. A comparative study showed that the membranes reconstituted by a dialysis or absorption do not differ from each other in terms of membrane proteins incorporation into lipid vesicles and cytochrome P-450 reconversion into cytochrome P-450. A possibility of biomembrane reconstitution from membrane proteins and lipids solubilized by a non-ionic detergent Triton X-100 was shown. A removal of the detergent results in a formation of membranes, which are chemically close to the original ones but ultrastructurally very different from the latter. On the other hand, absorption or dialysis of cholate-solubilized proteins and lipids results in reconstituted membranes with asymmetrically arranged intramembrane particles located on the hydrophobic surfaces of the membrane halves. The number and size of these particles are similar to those of the original microsomal membranes.  相似文献   

20.
Diatoms show a special organisation of their plastid membranes, such that their thylakoids span the entire plastid in bands of three. While in higher plants the interaction of the light harvesting complex II and photosystem II with divalent cations (especially Mg2+) was found to take part in the interplay of electrostatic attraction and repulsion in grana membrane appression, for diatoms the key players in maintaining proper membrane distances were not identified so far. In this work, we investigated the changes in the thylakoid architecture of Thalassiosira pseudonana in reaction to different salts by using circular dichroism and fluorescence spectroscopy in combination with other techniques. We show that divalent cations have an important influence on optimal pigment organisation and thus also on maintaining membrane appression. Thereby, monovalent cations are far less effective. The concentration needed is in a physiological range and fits well with the values obtained for higher plant grana stacking, despite the fact that strict protein segregation as seen in higher plant grana is missing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号