首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limitations to photosynthesis were explored in leaves from four canopy positions of field-grown, unshaded coffee (Coffea arabica L.), a tropical tree species classified as shade-obligatory. Overall, compared to shade (lower) leaves, sun (upper) leaves had higher net carbon assimilation rate (A) (4.5 against 2.0mumolm(-2)s(-1) at most) associated with higher electron transport rate (due to a greater irradiance availability) but unrelated to stomatal and mesophyll conductances, which were similar regardless of leaf position. Neither physiological variable directly involved with photosynthetic carbon gain nor those involved with light capture were able to adjust themselves to match the capacity of the photosynthetic machinery to the light supply. We concluded that: (i) there was no major difference in photosynthetic capacity between sun and shade leaves; (ii) the intrinsic low A in coffee was greatly associated with remarkable low diffusive limitations rather than with biochemical or photochemical constraints; and (iii) morphological (e.g., variations in specific leaf area and leaf inclination) or anatomical plasticity should be of greater acclimative value than physiological plasticity as a mean of coffee leaves to respond to changing irradiance.  相似文献   

2.
Global-change scenarios suggest a trend of increasing diffuse light due to expected increases in cloud cover. Canopy-level measurements of plant-community photosynthesis under diffuse light show increased productivity attributed to more uniform distribution of light within the forest canopy, yet the effect of the directional quality of light at the leaf level is unknown. Here we show that leaf-level photosynthesis in sun leaves of both C(3) and C(4) plants can be 10-15% higher under direct light compared to equivalent absorbed irradiances of diffuse light. High-light-grown leaves showed significant photosynthetic enhancement in direct light, while shade-adapted leaves showed no preference for direct or diffuse light at any irradiance. High-light-grown leaves with multiple palisade layers may be adapted to better utilize direct than diffuse light, while shade leaf structure does not appear to discriminate light based on its directionality. Based upon our measurements, it appears that leaf-level and canopy-level photosynthetic processes react differently to the directionality of light, and previously observed increases in canopy-level photosynthesis occur even though leaf-level photosynthesis decreases under diffuse light.  相似文献   

3.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per‐area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two‐fraction leaf (sun and shade), two‐layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within‐canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground‐based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two‐fraction leaf, two‐layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance‐derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.  相似文献   

4.
Comparative ecophysiology of leaf and canopy photosynthesis   总被引:22,自引:7,他引:15  
Leaves and herbaceous leaf canopies photosynthesize efficiently although the distribution of light, the ultimate resource of photosynthesis, is very biased in these systems. As has been suggested in theoretical studies, if a photosynthetic system is organized such that every photosynthetic apparatus photosynthesizes in concert, the system as a whole has the sharpest light response curve and is most adaptive. This condition can be approached by (i) homogenization of the light environment and (ii) acclimation of the photosynthetic properties of leaves or chloroplasts to their local light environments. This review examines these two factors in the herbaceous leaf canopy and in the leaf. Changes in the inclination of leaves in the canopy and differentiation of mesophyll into palisade and spongy tissue contribute to the moderation of the light gradient. Leaf and chloroplast movements in the upper parts of these systems under high irradiances also moderate light gradients. Moreover, acclimation of leaves and chloroplasts to the local light environment is substantial. These factors increase the efficiency of photosynthesis considerably. However, the systems appear to be less efficient than the theoretical optimum. When the systems are optically dense, the light gradients may be too great for leaves or chloroplasts to acclimate. The loss of photosynthetic production attributed to the imperfect adjustment of photosynthetic apparatus to the local light environment is most apparent when the photosynthesis of the system is in the transition between the light-limited and light-saturated phases. Although acclimation of the photosynthetic apparatus and moderation of light gradients are imperfect, these markedly raise the efficiency of photosynthesis. Thus more mechanistic studies on these adaptive attributes are needed. The causes and consequences of imperfect adjustment should also be investigated.  相似文献   

5.
Ozone pollution may reduce net carbon gain in forests, yet data from mature trees are rare and the effects of irradiance on the response of photosynthesis to ozone remain untested. We used an open-air system to expose 10 branches within the upper canopy of an 18-m-tall stand of sugar maple (Acer saccharum Marsh.) to twice-ambient concentrations of ozone (95nmol mol?1, 0900 to 1700, 1 h mean) relative to 10 paired, untreated controls (45nmol mol?1) over 3 months. The branch pairs were selected along a gradient from relatively high irradiance (PPFD 14.5 mol m?2 d?1) to deep shade (0.7mol m?2 d?1). Ozone reduced light-saturated rates of net photosynthesis (Asat) and increased dark respiration by as much as 56 and 40%, respectively. Compared to sun leaves, shade leaves exhibited greater proportional reductions in Asat and had lower chlorophyll concentrations, quantum efficiencies, and leaf absorptances when treated with ozone relative to controls. With increasing ozone dose over time, Asat became uncoupled from stomatal conductance as ratios of internal to external concentrations of carbon dioxide increased, reducing water-use efficiency. Ozone reduced net photosynthesis and impaired stomatal function, with these effects depending on the irradiance environment of the canopy leaves. Increased ozone sensitivity of shade leaves compared to sun leaves has consequences for net carbon gain in canopies.  相似文献   

6.
《植物生态学报》1958,44(8):854
由于经济的快速发展, 中国大部分地区正面临着严峻的复合型大气污染, 其中臭氧和气溶胶是两种主要污染物。已有的研究表明臭氧对叶片的氧化性伤害能够抑制光合作用, 而气溶胶可通过增加散射辐射比例或缓解高温抑制促进光合作用。但复合污染下, 臭氧和气溶胶如何共同调控叶片光合作用, 仍缺乏研究。该研究利用北京及周边地区之间的污染梯度, 选择加杨(Populus × canadensis)作为实验对象, 于2012-2013年生长季期间对叶片光合速率进行连续观测, 并同时监测臭氧浓度(AOT40)、气溶胶光学厚度(AOD)、空气温度和冠层内外光合有效辐射(PAR)等环境因子, 以期探讨大气复合污染下臭氧和气溶胶变化对植物叶片光合作用的影响及相关机制。结果表明: (1)臭氧浓度与空气温度、气溶胶浓度之间均呈显著正相关关系, 但气溶胶浓度与空气温度没有显著相关关系; (2)臭氧浓度增加显著抑制了阳生叶片的光合作用, 但气溶胶浓度上升促进了阳生叶片的光合作用; 臭氧浓度升高对阴生叶片光合作用的影响较小, 但气溶胶浓度上升促进了阴生叶片的光合作用; (3)标准化后的结果显示, 臭氧对阳生叶片光合作用的影响最大, 此时气溶胶的促进作用一定程度上补偿了臭氧浓度上升所带来的抑制效应。对于阴生叶片光合作用而言, 气溶胶则是最重要的影响因素。该研究发现复合污染下阴生叶和阳生叶光合响应不同, 这表明冠层结构可能通过影响阴生叶和阳生叶的比例, 从而对植物生长产生不同影响。该研究对理解大气复合污染如何影响光合作用提供了的机理支持, 同时也表明, 为了维持生态系统生产力及功能, 需要同时控制气溶胶和臭氧污染。  相似文献   

7.
由于经济的快速发展, 中国大部分地区正面临着严峻的复合型大气污染, 其中臭氧和气溶胶是两种主要污染物。已有的研究表明臭氧对叶片的氧化性伤害能够抑制光合作用, 而气溶胶可通过增加散射辐射比例或缓解高温抑制促进光合作用。但复合污染下, 臭氧和气溶胶如何共同调控叶片光合作用, 仍缺乏研究。该研究利用北京及周边地区之间的污染梯度, 选择加杨(Populus × canadensis)作为实验对象, 于2012-2013年生长季期间对叶片光合速率进行连续观测, 并同时监测臭氧浓度(AOT40)、气溶胶光学厚度(AOD)、空气温度和冠层内外光合有效辐射(PAR)等环境因子, 以期探讨大气复合污染下臭氧和气溶胶变化对植物叶片光合作用的影响及相关机制。结果表明: (1)臭氧浓度与空气温度、气溶胶浓度之间均呈显著正相关关系, 但气溶胶浓度与空气温度没有显著相关关系; (2)臭氧浓度增加显著抑制了阳生叶片的光合作用, 但气溶胶浓度上升促进了阳生叶片的光合作用; 臭氧浓度升高对阴生叶片光合作用的影响较小, 但气溶胶浓度上升促进了阴生叶片的光合作用; (3)标准化后的结果显示, 臭氧对阳生叶片光合作用的影响最大, 此时气溶胶的促进作用一定程度上补偿了臭氧浓度上升所带来的抑制效应。对于阴生叶片光合作用而言, 气溶胶则是最重要的影响因素。该研究发现复合污染下阴生叶和阳生叶光合响应不同, 这表明冠层结构可能通过影响阴生叶和阳生叶的比例, 从而对植物生长产生不同影响。该研究对理解大气复合污染如何影响光合作用提供了的机理支持, 同时也表明, 为了维持生态系统生产力及功能, 需要同时控制气溶胶和臭氧污染。  相似文献   

8.
In order to parametrize a leaf submodel of a canopy level gas-exchange model, a series of photosynthesis and stomatal conductance measurements were made on leaves of white oak (Quercus alba L.) and red maple (Acer rubrum L.) in a mature deciduous forest near Oak Ridge, TN. Gas-exchange characteristics of sun leaves growing at the top of a 30 m canopy and of shade leaves growing at a depth of 3–4 m from the top of the canopy were determined. Measured rates of net photosynthesis at a leaf temperature of 30°C and saturating photosynthetic photon flux density, expressed on a leaf area basis, were significantly lower (P = 0.01; n = 8) in shade leaves (7.9μmol m?2 s?1) than in sun leaves (11–5μmol m?2 s?1). Specific leaf area increased significantly with depth in the canopy, and when photosynthesis rates were expressed on a dry mass basis, they were not significantly different for shade and sun leaves. The percentage leaf nitrogen did not vary significantly with height in the canopy; thus, rates expressed on a per unit nitrogen basis were also not significantly different in shade and sun leaves. A widely used model integrating photosynthesis and stomatal conductance was parametrized independently for sun and shade leaves, enabling us to model successfully diurnal variations in photosynthesis and evapotranspiration of both classes of leaves. Key photosynthesis model parameters were found to scale with leaf nitrogen levels. The leaf model parametrizations were then incorporated into a canopy-scale gas-exchange model that is discussed and tested in a companion paper (Baldocchi & Harley 1995, Plant, Cell and Environment 18, 1157–1173).  相似文献   

9.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

10.
Summary A model of daily canopy photosynthesis was constructed taking light and leaf nitrogen distribution in the canopy into consideration. It was applied to a canopy of Solidago altissima. Both irradiance and nitrogen concentration per unit leaf area decreased exponentially with increasing cumulative leaf area from the top of the canopy. The photosynthetic capacity of a single leaf was evaluated in relation to irradiance and nitrogen concentration. By integration, daily canopy photosynthesis was calculated for various canopy architectures and nitrogen allocation patterns. The optimal pattern of nitrogen distribution that maximizes the canopy photosynthesis was determined. Actual distribution of leaf nitrogen in the canopy was more uniform than the optimal one, but it realized over 20% more photosynthesis than that under uniform distribution and 4.7% less photosynthesis than that under the optimal distribution. Redeployment of leaf nitrogen to the top of the canopy with ageing should be more effective in increasing total canopy photosynthesis in a stand with a dense canopy than in a stand with an open canopy.  相似文献   

11.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mitochondrial respiration (Gamma*), which probes the CO(2) versus O(2) specificity of Rubisco, was not significantly different in sun and shade leaves. The maximal net assimilation rates and stomatal and mesophyll conductances to CO(2) transfer were markedly lower in shade than in sun leaves. Dark respiration rates were also lower in shade leaves. However, the percentage inhibition of respiration by light during photosynthesis was similar in both sun and shade leaves. The extent of the changes in photosynthetic capacity and mesophyll conductance between sun and shade leaves under simulated conditions was similar to that observed between sun and shade leaves collected within the mature tree crown. Moreover, mesophyll conductance was strongly correlated with maximal net assimilation and the relationships were not significantly different between the two experiments, despite marked differences in leaf anatomy. These results suggest that photosynthetic capacity is a valuable parameter for modelling within-canopies variations of mesophyll conductance due to leaf acclimation to light.  相似文献   

12.
The present study was performed to investigate the adjustment of the constituents of the light and dark reactions of photosynthesis to the natural growth irradiance in the leaves of an overstorey species, Betula pendula Roth, a subcanopy species Tilia cordata P. Mill., and a herb Solidago virgaurea L. growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and properties of individual leaves were measured in a laboratory, by applying a routine of kinetic gas exchange and optical measurements that revealed photosystem II (PSII), photosystem I (PSI), and cytochrome b6f densities per leaf area and the distribution of excitation (or chlorophyll, Chl) between the two photosystems. In parallel, N, Chl and ribulose-bisphosphate carboxylase-oxygenase (Rubisco) content was measured from the same leaves. The amount of N in photosynthetic proteins was calculated from the measured contents of the components of the photosynthetic machinery. Non-photosynthetic N was found as the residual of the budget. Growth in shade resulted in the decrease of leaf dry mass to a half of the DW in sun leaves in each species, but the total variation, from the top to the bottom of the canopy, was larger. Through the whole cross-section of the canopy, leaf dry weight (DW) and Rubisco content per area decreased by a factor of four, N content by a factor of three, but Chl content only by a factor of 1.7. PSII density decreased by a factor of 1.9, but PSI density by a factor of 3.2. The density of PSI adjusted to shade to a greater extent than the density of PSII. In shade, the distribution of N between the components of the photosynthetic machinery was shifted toward light-harvesting proteins at the expense of Rubisco. Non-photosynthetic N decreased the most substantially, from 54% in the sun leaves of B. pendula to 11% in the shade leaves of T. cordata. It is concluded that the redistribution of N toward light-harvesting Chl proteins in shade is not sufficient to keep the excitation rate of a PSII centre invariant. Contrary to PSII, the density of PSI – the photosystem that is in immediate contact with the carbon assimilation system – shade-adjusts almost proportionally with the latter, whereas its Chl antenna correspondingly increases. Even under N deficiency, a likely condition in the natural plant community, a substantial part of N is stored in non-photosynthetic proteins under abundant irradiation, but much less under limiting irradiation. At least in trees the general sequence of down-regulation due to shade adjustment is the following: (1) non-protein cell structures and non-photosynthetic proteins; (2) carbon assimilation proteins; (3) light reaction centre proteins, first PSI; and (4) chlorophyll-binding proteins.  相似文献   

13.
BACKGROUND AND AIMS: Acclimation of photosynthesis to light and its connection with canopy nitrogen (N) distribution are considered. An interpretation of a proportionality between light-saturated photosynthesis and local averaged leaf irradiance is proposed by means of a simple model. MODEL: The model assumes (a) local irradiance drives synthesis of photosynthetic protein from metabolic N; (b) photosynthetic N is slowly degraded over approx. 5-7 d; (c) metabolic N is equally available through the canopy. CONCLUSIONS: The kinetics of acclimation at different light levels may provide a way of parameterizing and testing the model. The model provides a rationale for the proportionality assumption mentioned above, which, while it is consistent with much experimental work, is valuable because it allows canopy photosynthesis to be calculated analytically.  相似文献   

14.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

15.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   

16.
Contribution of intercellular reflectance to photosynthesis in shade leaves   总被引:2,自引:1,他引:2  
The potential contribution of intercellular light reflectance to photosynthesis was investigated by infiltrating shade leaves with mineral oil. Infiltration of leaves of Hydrophyllum canadense and Asarum canadense with mineral oil decreased adaxial leaf reflectance but increased transmittance. As a result of the large increase in transmittance, infiltration caused a decrease in absorptance of 25% and 30% at 550 and 750 nm, respectively. Thus, intercellular reflectance increased absorptance in these species by this amount. In a comparison of sun and shade leaves of Acer saccharum and Parthenocissus quinquefolia, oil infiltration decreased absorptance more in shade than in sun leaves. This difference suggests that the higher proportion of spongy mesophyll in shade leaves may increase internal light scattering and thus absorptance. The importance of the spongy mesophyll in increasing internal reflectance was also evident in comparisons of the optics of Populus leaves and in the fluorescence yield of oil-infiltrated leaves of several sun and shade species. Oil infiltration decreased the quantum yield of fluorescence (Fo) by 39–52% for shade leaves but only 21–25% for sun leaves. We conclude that the greater proportion of spongy parenchyma in shade leaves increased intercellular light scattering and thus absorptance. Direct measurements with fibre-optic light probes of the distribution of light inside leaves of Hydrophyllum canadense confirmed that oil infiltration decreased the amount of back-scattered light and that most of the light scattering for this species occurred from the middle of the palisade layer to the middle of the spongy mesophyll. We were not, however, able to assess the potential contribution of reflectance from the internal abaxial epidermis to total internal light scattering in these experiments. Using a mathematical model to compare the response of net photosynthesis (O2, flux) to incident irradiance for control leaves of H. canadense and theoretical leaves with no intercellular reflectance, we calculated that intercellular reflectance caused a 1.97-fold increase in photosynthesis at 20 μmol m?2s?1 (incident photon flux density). This enhancement of absorption and photosynthesis by inter-cellular reflectance, without additional production and maintenance of photosynthetic pigments, may maintain shade leaves above the photosynthetic light compensation point between sunflecks and maintain the light induction state during protracted periods of low diffuse light.  相似文献   

17.
The effect of natural shading on photosynthetic capacity and chloroplast thylakoid membrane function was examined in soybean (Glycine max. cv Young) under field conditions using a randomized complete block design. Seedlings were thinned to 15 plants per square meter at 20 days after planting. Leaves destined to function in the shaded regions of the canopy were tagged during early expansion at 40 days after planting. To investigate the response of shaded leaves to an increase in available light, plants were removed from certain plots at 29 or 37 days after tagging to reduce the population from 15 to three plants per square meter and alter the irradiance and spectral quality of light. During the transition from a sun to a shade environment, maximum photosynthesis and chloroplast electron transport of control leaves decreased by two- to threefold over a period of 40 days followed by rapid senescence and abscission. Senescence and abscission of tagged leaves were delayed by more than 4 weeks in plots where plant populations were reduced to three plants per square meter. Maximum photosynthesis and chloroplast electron transport activity were stabilized or elevated in response to increased light when plant populations were reduced from 15 to three plants per square meter. Several chloroplast thylakoid membrane components were affected by light environment. Cytochrome f and coupling factor protein decreased by 40% and 80%, respectively, as control leaves became shaded and then increased when shaded leaves acclimated to high light. The concentrations of photosystem I (PSI) and photosystem II (PSII) reaction centers were not affected by light environment or leaf age in field grown plants, resulting in a constant PSII/PSI ratio of 1.6 ± 0.3. Analysis of the chlorophyll-protein composition revealed a shift in chlorophyll from PSI to PSII as leaves became shaded and a reversal of this process when shaded leaves were provided with increased light. These results were in contrast to those of soybeans grown in a growth chamber where the PSII/PSI ratio as well as cytochrome f and coupling factor protein levels were dependent on growth irradiance. To summarize, light environment regulated both the photosynthetic characteristics and the timing of senescence in soybean leaves grown under field conditions.  相似文献   

18.
Photosynthetic capacity was measured on detached leaves sampled in a canopy of Solidago altissima L. Non-rectangular hyperbola fitted the light response curve of photosynthesis and significant correlations were observed between leaf nitrogen per unit area and four parameters which characterize the light-response curve. Using regressions of the parameters on leaf nitrogen, a model of leaf photosynthesis was constructed which gave the relationships between leaf nitrogen, photon flux density (PFD) and photosynthesis. Curvilinear relations were obtained between leaf nitrogen and photosynthetic rate on both an instantaneous and a daily basis. Nitrogen use efficiency (NUE, photosynthesis per unit leaf nitrogen) was calculated against leaf nitrogen under varying PFDs. The optimum nitrogen content per unit leaf area that maximizes NUE shifted to higher values with increasing PFD. Field measurements of PFD showed high positive correlations between the distribution of leaf nitrogen in the canopy and relative PFD. The predicted optimum leaf nitrogen content for each level in the canopy, to achieve maximized NUE during a clear day, was close to the actual nitrogen distribution as found through sampling.  相似文献   

19.
Plants in natural environments are often exposed to fluctuations in light intensity, and leaf‐level acclimation to light may be affected by those fluctuations. Concurrently, leaves acclimated to a given light climate can become progressively shaded as new leaves emerge and grow above them. Acclimation to shade alters characteristics such as photosynthetic capacity. To investigate the interaction of fluctuating light and progressive shading, we exposed three‐week old tomato (Solanum lycopersicum ) plants to either lightflecks or constant light intensities. Lightflecks of 20 s length and 1000 μmol m?2 s?1 peak intensity were applied every 5 min for 16 h per day, for 3 weeks. Lightfleck and constant light treatments received identical daily light sums (15.2 mol m?2 day?1). Photosynthesis was monitored in leaves 2 and 4 (counting from the bottom) during canopy development throughout the experiment. Several dynamic and steady‐state characteristics of photosynthesis became enhanced by fluctuating light when leaves were partially shaded by the upper canopy, but much less so when they were fully exposed to lightflecks. This was the case for CO2‐saturated photosynthesis rates in leaves 2 and 4 growing under lightflecks 14 days into the treatment period. Also, leaf 2 of plants in the lightfleck treatment showed significantly faster rates of photosynthetic induction when exposed to a stepwise change in light intensity on day 15. As the plants grew larger and these leaves became increasingly shaded, acclimation of leaf‐level photosynthesis to lightflecks disappeared. These results highlight continuous acclimation of leaf photosynthesis to changing light conditions inside developing canopies.  相似文献   

20.
Rice (Oryza sativa L.) has been used to study the long-term responses of photosynthesis to high irradiance focusing on the composition of the photosynthetic apparatus and leaf morphology. Typical sun/shade differences in chloroplast composition are seen in the fifth leaf following growth in high irradiance compared with low irradiance (1000 and 200 micromol m(-2) s(-1), respectively): higher light-saturated rates of photosynthesis (P(max)), higher amounts of Rubisco protein, and a lower chlorophyll a:b ratio. In addition, leaves were thicker under high light compared with low light. However, responses appear more complex when leaf developmental stage is considered. Using a system of transferring plants from low to high light in the laboratory responses that occur before and after full leaf extension have been studied. Acclimation of photosynthesis is limited by leaf age: the transfer to high light, post-leaf extension, is characterized by alterations in chlorophyll a:b but not in Rubisco protein, which may be limited by leaf morphology. Microarray analysis of gene expression was carried out on plants that were transferred to high light post-leaf extension. A down-regulation of light-harvesting genes was seen. No change in the expression level of Rubisco genes was observed. Up-regulation of genes involved in photoprotection was observed. It was also shown that high-light leaf morphology is established prior to formation of the zone of cellular elongation and division. The endogenous and environmental factors which establish the characteristics of high light acclimation may be important for attaining high rates of assimilation in leaves and crop canopies, and the fifth leaf in rice provides a convenient model system for the determination of the mechanisms involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号