首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L A Sporn  V J Marder  D D Wagner 《Cell》1986,46(2):185-190
von Willebrand factor (vWf) secreted constitutively by human endothelial cells was compared to that released from Weibel-Palade bodies after stimulation. The majority of constitutively secreted molecules were dimeric and contained both pro-vWf and mature subunits. In contrast, the vWf released by the calcium ionophore A23187 or thrombin consisted of only very large multimers of mature subunits. The large multimers are known to be more active in in vitro platelet binding assays, and their absence in vivo results in a bleeding disorder. Endothelial cells therefore concentrate a special subclass of very large and biologically potent vWf multimers in Weibel-Palade bodies, presumably available for release in response to vascular injury.  相似文献   

2.
Backgroundvon Willebrand factor (VWF) multimers (VWF:MM) methodologies are technically difficult, laborious, time consuming, non-standardized and results vary between laboratories. A new semi automated VWF:MM assay is available for routine use (Sebia). Due to lack of reference values for VWF:MM fractions, results interpretation can be challenging in some cases. The aim of this study was to determine reference intervals for low molecular weight (LMWM), intermediate molecular weight (IMWM) and high molecular weight (HMWM) multimers.MethodsBy the international cooperation initiated between 4 countries (Estonia, Latvia, France, and USA) 131 samples of relatively healthy individuals were analyzed for VWF:MM (in total 51 males and 80 non-pregnant females aged 17-69 years). Reference intervals were calculated according to CLSI C28-A3 standard.ResultsThe proposed reference intervals for VWF:MM were calculated for LMWM 10.4-22.5%, IMWM 22.6-37.6%, HMWM 45.6-66.6%. Age related differences were seen in IMWM and HMWM (p<0.001 and 0.038). There was no gender related difference observed. Geographically LMWM results of France were different from the other regions (p<0.05).ConclusionsQuantification of VWF:MM fractions, in addition to qualitative assessment of VWF:MM patterns, has the potential to aid in differential diagnosis of von Willebrand disease (VWD) subtypes. The reference values calculated in this study can be used in future research to establish clinical decision limits.  相似文献   

3.
A primary and critical step in platelet attachment to injured vascular endothelium is the formation of reversible tether bonds between the platelet glycoprotein receptor Ibalpha and the A1 domain of surface-bound von Willebrand factor (vWF). Due to the platelet's unique ellipsoidal shape, the force mechanics involved in its tether bond formation differs significantly from that of leukocytes and other spherical cells. We have investigated the mechanics of platelet tethering to surface-immobilized vWF-A1 under hydrodynamic shear flow. A computer algorithm was used to analyze digitized images recorded during flow-chamber experiments and track the microscale motions of platelets before, during, and after contact with the surface. An analytical two-dimensional model was developed to calculate the motion of a tethered platelet on a reactive surface in linear shear flow. Through comparison of the theoretical solution with experimental observations, we show that attachment of platelets occurs only in orientations that are predicted to result in compression along the length of the platelet and therefore on the bond being formed. These results suggest that hydrodynamic compressive forces may play an important role in initiating tether bond formation.  相似文献   

4.
von Willebrand factor (vWf) which serves as a necessary factor for platelet adhesion to damaged vascular subendothelium can bind to the platelet surface via two distinct receptors. Ristocetin promotes the binding of vWf to platelet membrane glycoprotein lb, whereas platelet activation by thrombin supports binding to the glycoprotein IIb/IIIa complex. Platelet adhesion to vWf substrates mediated by these two mechanisms has been compared. Both mechanisms supported similar rates of adhesion to the substrates. Whereas adhesion via the ristocetin-dependent mechanism did not require divalent cations, adhesion mediated by the thrombin-dependent mechanism required the presence of divalent cations. Modification of vWf amino groups markedly impaired the ability of the protein to support ristocetin-dependent adhesion but did not alter its ability to support thrombin-enhanced adhesion. Reduction and carboxymethylation nearly abolished the ability of vWf to support adhesion via the ristocetin-dependent mechanism, but did not substantially impair its ability to support thrombin-enhanced adhesion. Short synthetic peptides containing the sequence Arg-Gly-Asp-Ser effectively inhibited thrombin-dependent platelet adhesion to vWf substrates but had no effect on ristocetin-dependent adhesion. Substrates composed of synthetic peptides containing the Arg-Gly-Asp-Ser sequence supported thrombin-dependent adhesion but did not support ristocetin-dependent adhesion. Scanning electron microscopic examination revealed that platelets adherent via the ristocetin-dependent mechanism almost uniformly adopted a flattened and fully spread appearance. In contrast, the thrombin-enhanced mechanism of adhesion supported only a limited degree of platelet spreading on the vWf substrate.  相似文献   

5.
Thrombotic thrombocytopenic purpura is caused by congenital or acquired deficiency of ADAMTS-13, a metalloprotease that cleaves the endothelium-derived ultra-large multimers of von Willebrand factor (ULVWF). The proteolysis converts hyper-reactive and thrombogenic ULVWF into smaller and less adhesive plasma forms. Activity of ADAMTS-13 is usually measured in a static system under non-physiological conditions that require protein denaturation and prolonged incubation. We have demonstrated previously that ULVWF multimers, upon release from endothelial cells, form platelet-decorated string-like structures that are rapidly cleaved by ADAMTS-13. Here we report the direct interaction between ADAMTS-13 and VWF under both static and flowing conditions. ADAMTS-13-coated beads adhered to both immobilized VWF and ULVWF strings presented by stimulated endothelial cells. These beads adhered to VWF under both venous (2.5 dynes/cm2) and arterial (30 dynes/cm2) shear stresses. We then demonstrated that ADAMTS-13 beads adhered to immobilized recombinant VWF-A1 and -A3 domains, but soluble metalloprotease bound preferentially to the A3 domain, suggesting that the VWF A3 domain may be the primary docking site for the metalloprotease. We suggest that tensile stresses imposed by fluid shear stretch endothelial bound ULVWF multimers to expose binding sites within the A domains for circulating ADAMTS-13. The bound enzyme then cleaves within the A2 domain that lies in close proximity and releases smaller VWF multimers into the plasma. Once released, these cleaved VWF fragments become inaccessible for the metalloprotease to prevent further cleavage.  相似文献   

6.
The biosynthesis of von Willebrand Factor (vWF) by vascular endothelial cells involves a complex series of processing steps that includes proteolytic cleavage of a 741-residue propeptide and the assembly of disulfide-linked multimers. Using a model system in which experimentally altered vWF cDNAs are expressed in COS-1 cells, we have shown that the vWF propeptide contains determinants that govern the assembly of vWF multimers. Furthermore, the role of the propeptide (in the assembly process) does not require it to be a contiguous part of the pro-vWF primary structure, since independently expressed propeptide was shown to promote the assembly of mature vWF subunits into multimers. Pulse-chase experiments indicated that the independently expressed propeptide formed a transient association with the mature vWF subunit inside the cell. Thus, it appears that the vWF propeptide segment can act in "trans" to direct the assembly of disulfide-linked vWF multimers.  相似文献   

7.
The von Willebrand factor (VWF) is a multimeric glycoprotein composed of 80- to 120-nm-long protomeric units and plays a fundamental role in mediating platelet function at high shear. The exact nature of the shear-induced structural transitions have remained elusive; uncovering them requires the high-resolution quantitative analysis of gradually extended VWF. Here, we stretched human blood-plasma-derived VWF with molecular combing and analyzed the axial structure of the elongated multimers with atomic force microscopy. Protomers extended through structural intermediates that could be grouped into seven distinct topographical classes. Protomer extension thus progresses through the uncoiling of the C1–6 domain segment, rearrangements among the N-terminal VWF domains, and unfolding and elastic extension of the A2 domain. The least and most extended protomer conformations were localized at the ends and the middle of the multimer, respectively, revealing an apparent necking phenomenon characteristic of plastic-material behavior. The structural hierarchy uncovered here is likely to provide a spatial control mechanism to the complex functions of VWF.  相似文献   

8.
The largest blood glycoprotein von Willebrand factor (VWF) responds to hydrodynamic stresses in the bloodstream with abrupt conformation changes, thus increasing its adhesivity to platelets and collagen. Arterial and microvascular hemostasis relies on mechanical and physicochemical properties of this macromolecule. Recently, it was discovered that the mechanical properties of VWF are controlled by multiple pH-dependent interactions with opposite trends within dimeric subunits. In this work, computer simulations reveal the effect of these intradimer forces on the conformation of VWF multimers in various hydrodynamic conditions. A coarse-grained computer model of VWF has been proposed and parameterized to give a good agreement with experimental data. The simulations suggest that strong attraction between VWF D4 domains increases the resistance to elongation under shear stress, whereas even intermediate attraction between VWF C domains contributes to VWF compaction in nonsheared fluid. It is hypothesized that the detailed subdimer dynamics of VWF concatamers may be one of the biophysical regulators of initial hemostasis and arterial thrombosis.  相似文献   

9.
Polar secretion of von Willebrand factor by endothelial cells   总被引:2,自引:0,他引:2  
Human umbilical vein endothelial cells cultured on a collagen lattice were used to study the polarity of von Willebrand factor (vWF) secretion. Endothelial cells cultured under these conditions allow direct measurements of substances released at both the apical and basolateral surface. The constitutive secretion of vWF was compared to the release of vWF from their storage granules after stimulation (regulated secretion). The basal, constitutive release of vWF occurs into both the apical and subendothelial direction. The rate of accumulation of vWF to the subendothelial direction is about three times higher than the amount of vWF secreted into the lumenal medium per unit of time. However, upon stimulation of confluent endothelial cell monolayers with phorbol myristate acetate, endothelial cells predominantly secrete vWF at the lumenal surface. Under these conditions, vWF does not accumulate in the collagen matrix. Thus, endothelial cells are able to organize themselves into a polarized monolayer, in such a way that vWF secreted by the regulated pathway accumulates at the lumenal site, whereas resting endothelial cells release vWF predominantly at the opposite, basolateral surface.  相似文献   

10.
Snake venom metalloproteinases (SVMPs) have recently been shown to interact with proteins containing von Willebrand factor A (VWA) domains, including the extracellular matrix proteins collagen XII, collagen XIV, matrilins 1, 3 and 4, and von Willebrand factor (VWF) via their cysteine-rich domain. We extended those studies using surface plasmon resonance to investigate the interaction of SVMPs with VWF, and demonstrated that jararhagin, a PIII SVMP containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains, catrocollastatin C, a disintegrin-like/cysteine-rich protein, and the recombinant cysteine-rich domain of atrolysin A (A/C) all interacted with immobilized VWF in a dose-dependent fashion. Binding of VWF in solution to immobilized A/C was inhibited by ristocetin and preincubation of platelets with A/C abolished ristocetin/VWF-induced platelet aggregation, indicating that the interaction of A/C with VWF is mediated by the VWA1 domain. Jararhagin cleaved VWF at sites adjacent to the VWA1 domain, whereas atrolysin C, a SVMP lacking the cysteine-rich domain, cleaved VWF at dispersed sites. A/C and catrocollastatin C completely inhibited the digestion of VWF by jararhagin, demonstrating that the specific interaction of jararhagin with VWF via the VWA1 domain is necessary for VWF proteolysis. In summary, we localized the binding site of PIII SVMPs in VWF to the A1 domain. This suggests additional mechanisms by which SVMPs may interfere with the adhesion of platelets at the site of envenoming. Thus, specific interaction of cysteine-rich domain-containing SVMPs with VWF may function to promote the hemorrhage caused by SVMP proteolysis of capillary basements and surrounding stromal extracellular matrix.  相似文献   

11.
Bitiscetin, a C-type lectin-like heterodimeric snake venom protein purified from Bitis arietans, binds to human von Willebrand factor (VWF) and induces the platelet membrane glycoprotein (GP) Ib-dependent platelet agglutination in vitro similar to botrocetin. In contrast with botrocetin which binds to the A1 domain of VWF, the A3 domain, a major collagen-binding site of VWF, was proposed to be a bitiscetin-binding site. In the competitive binding assay, neither bitiscetin nor botrocetin had an inhibitory effect on the VWF binding to the immobilized type III collagen on a plastic plate. The anti-VWF monoclonal antibody NMC-4, which inhibits VWF-induced platelet aggregation by binding to alpha4 helix of the A1 domain, also inhibited bitiscetin binding to the VWF. Binding of VWF to the immobilized bitiscetin was competitively inhibited by a high concentration of botrocetin. A panel of recombinant VWF, in which alanine-scanning mutagenesis was introduced to the charged amino acid residues in the A1 domain, showed that the bitiscetin-binding activity was reduced in mutations at Arg632, Lys660, Glu666, and Lys673 of the A1 domain. Those substituted at Arg629, Arg636, and Lys667, which decreased the botrocetin binding, showed no effect on the bitiscetin binding. These results indicate that bitiscetin binds to a distinct site in the A1 domain of VWF spanning over alpha4a, alpha5 helices and the loop between alpha5 and beta6 but close to the botrocetin- and NMC-4-binding sites. Monoclonal antibodies recognizing the alpha-subunit of bitiscetin specifically inhibited bitiscetin-induced platelet agglutination without affecting the binding between VWF and bitiscetin, suggesting that the alpha-subunit of bitiscetin is located on VWF closer to the GPIb-binding site than the beta-subunit is. Bitiscetin and botrocetin might modulate VWF by binding to the homologous region of the A1 domain to induce a conformational change leading to an increased accessibility to platelet GPIb.  相似文献   

12.
GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.  相似文献   

13.
von Willebrand factor (vWF) is a multimeric glycoprotein that promotes platelet aggregation and stabilizes coagulation factor VIII in the plasma. vWF is also required for the stable accumulation of recombinant factor VIII secreted from cells in a heterologous expression system. In this report, we show that vWF can promote the in vitro reconstitution of factor VIII activity from dissociated heavy and light chains of factor VIII, suggesting that vWF may act to promote stable assembly of factor VIII subunits at the site of secretion. The structural requirements for vWF propeptide cleavage and for vWF multimerization in its binding and stabilization of factor VIII was examined using specifically altered recombinant vWF. The mutant vWF molecules were also assayed for their function in ristocetin-induced platelet agglutination mediated through the platelet receptor GPIb. Deletion of the vWF propeptide produced a dimeric vWF molecule that failed to mediate platelet agglutination, suggesting that multimerization is required for vWF to attain functional GPIb binding. This mature dimeric form of vWF, however, was fully capable of binding to and supporting stable secretion of factor VIII. A vWF mutant with an altered propeptide cleavage site formed large multimers of uncleaved pro-vWF that functioned in platelet agglutination. However, this noncleavage mutant neither bound to or supported stable accumulation of factor VIII. Analysis of the vWF propeptide, expressed independently, demonstrated that it could not bind factor VIII or stabilize its secretion. These results show that the dimeric mature vWF subunit is sufficient to bind and stabilize factor VIII and that the presence of uncleaved vWF propeptide inhibits both factor VIII binding and stabilization.  相似文献   

14.
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of vascular diseases. HCMV infection of endothelial cells may lead to vascular damage in vitro, and acute-phase HCMV infection has been associated with thrombosis. We hypothesized that viral infection of endothelial cells activates coagulation cascades and contributes to thrombus formation and acute vascular catastrophes in patients with atherosclerotic disease. To assess the effects of HCMV on thrombogenesis, we examined the adhesion and aggregation of blood platelets to uninfected and HCMV-infected endothelial cells. At 7 days after infection, platelet adherence and aggregation were greater in infected than in uninfected cultures (2,000 platelets/100 cells and 225 +/- 15 [mean +/- standard error of the mean] aggregates/five microscopic fields versus 100 platelets/100 cells and no aggregates). von Willebrand factor (vWF), ICAM-1, and VCAM-1 but not collagen IV, E-selectin, P-selectin, CD13, and CD31 were expressed at higher levels on infected cells than on uninfected cells. Platelet aggregation was inhibited by blocking of platelet GPIb (with blocking antibodies) or GPIIb/IIIa (with ReoPro) or by blocking of vWF (with polyclonal antibodies to vWF). Furthermore, blocking of vWF, platelet GPIb, and ICAM-1 but not of the endothelial cell marker CD13, alpha(5)beta(3)-integrin, or HCMV glycoprotein B reduced platelet adherence to infected cells by 75% +/- 5%, 74% +/- 5%, or 18% +/- 5%, respectively. The increased thrombogenicity was dependent on active virus replication and could be inhibited by foscarnet and ganciclovir; these results suggest that a late viral gene may be mediating this phenomenon, which may contribute to vascular catastrophes in patients with atherosclerotic disease.  相似文献   

15.
Thrombus formation is initiated by platelets and leads to cardiovascular, cerebrovascular, and peripheral vascular disease, the leading causes of morbidity and mortality in the Western world. A number of antiplatelet drugs have improved clinical outcomes for thrombosis patients. However, their expanded use, especially in surgery, is limited by hemorrhage. Here, we describe an antiplatelet agent that can have its activity controlled by a matched antidote. We demonstrate that an RNA aptamer targeting von Willebrand factor (VWF) can potently inhibit VWF-mediated platelet adhesion and aggregation. By targeting this important adhesion step, we show that the aptamer molecule can inhibit platelet aggregation in PFA-100 and ristocetin-induced platelet aggregation assays. Furthermore, we show that a rationally designed antidote molecule can reverse the effects of the aptamer molecule, restoring platelet function quickly and effectively over a clinically relevant period. This aptamer-antidote pair represents a reversible antiplatelet agent inhibiting a platelet specific pathway. Furthermore, it is an important step towards creating safer drugs in clinics through the utilization of an antidote molecule.  相似文献   

16.
S Hirotsu  H Mizuno  K Fukuda  M C Qi  T Matsui  J Hamako  T Morita  K Titani 《Biochemistry》2001,40(45):13592-13597
Bitiscetin, a C-type lectin-like protein isolated from the venom of the snake Bitis arientans, promotes the interactions between plasma von Willebrand factor (VWF) and platelet membrane glycoprotein Ib (GPIb) to induce platelet aggregation. We report here the crystal structure of bitiscetin at 2.0 A resolution. The overall fold is similar to those of coagulation factor IX/X-binding protein (IX/X-bp) and flavocetin-A (a GPIb-binding protein), although these three proteins are functionally distinct from one another. The characteristic property determining target recognition is explained mainly by the differences in the surface potential on the central concave surface. A negatively charged patch on the surface of bitiscetin is a candidate for the site of binding to the positively charged surface of the VWF A1 domain, as shown in the case of another platelet aggregation inducer, botrocetin. However, a positively charged patch near the central concave surface is unique for bitiscetin and suggests that it is the binding site for the negatively charged surface of the VWF A3 domain. Thus, the interactions accounting for VWF activation by bitiscetin possibly involve both the A1 and A3 domains of VWF, indicating a specific mechanism of VWF activation by bitiscetin.  相似文献   

17.
Recently we have found that propolypeptide of von Willebrand factor (pp-vWF) obtained from platelets binds to type I collagen. It is known that pp-vWF is present in platelet alpha-granules and is secreted upon activation. In this paper, we demonstrate the two following evidences to show that it is also present on the surface of resting platelets. [1] The antibody against pp-vWF bound to the surface of platelets. [2] The antibody induced aggregation of platelets. The binding of the antibody and the antibody-induced aggregation of platelets were inhibited in a dose-dependent manner by Fab fragment of the antibody. Platelets from von Willebrand disease patients bound less of the antibody and responded weakly to the antibody.  相似文献   

18.
19.
Although the role of collagen in thrombosis has been extensively investigated, the contribution of other extracellular matrices is still unclear. We have recently reported that laminin stimulates platelet spreading through integrin alpha(6)beta(1)-dependent activation of the collagen receptor glycoprotein (GP) VI under static condition. Under physiological high and low shear conditions, platelets adhered to laminin, and this was strongly inhibited by an antibody that blocks association between GPIb-IX-V and von Willebrand factor (VWF). Moreover, platelets of type III von Willebrand disease or Bernard-Soulier syndrome adhered to laminin at a low shear condition but not at a high shear condition. The specific binding of laminin to VWF was confirmed by surface plasmin resonance spectroscopy (BIAcore). These findings suggest that laminin supports platelet adhesion depending on the interaction of VWF and GPIb-IX-V under pathophysiological high shear flow. This mechanism is similar to that of collagen. We propose that integrins, GPVI, GPIb-IX-V, and VWF represent a general paradigm for the interaction between platelets and subendothelial matrices.  相似文献   

20.
BackgroundAccurate diagnosis and classification of von Willebrand disease (VWD) are essential for optimal management. The von Willebrand factor multimers analysis (VWF:MM) is an integral part of the diagnostic process in the phenotypic classification, especially in discrepant cases. The aim of this study was to evaluate the performance of a new Hydragel 11VWF multimer assay (H11VW).MethodsAnalytical performance characteristics such as repeatability (intra-assay variability, in gel between track variation), reproducibility (inter-assay variability, between gel variation), sensitivity, EQA performance and differences between two commercially available VWF:MM kits (H5VW and H11VW) were analysed in healthy volunteers'' plasmas using in-house prepared reference plasma.ResultsRepeatability and reproducibility results of H11VW demonstrated acceptable and equivalent performance with previously verified H5VW. Participation in EQA was successful. No statistically significant difference was detected between H5VW and H11VW kits for different fractions of multimers: LMWM p=0.807; IMWM p=0.183; HMWM p=0.774.ConclusionsH11VW demonstrated acceptable analytical performance characteristics. H11VW kit conveniently offers a more significant number of samples on a single gel. H5VW and H11VW kits can be used in daily practice interchangeably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号