首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaeI, a novel DNA endonuclease, shows topoisomerase and recombinase activities when a Lys residue is substituted for Leu 43. The NaeI-DNA structure demonstrates that each of the two domains of NaeI recognizes one molecule of DNA duplex. DNA recognition induces dramatic rearrangements: narrowing the binding site of the Topo domain 16 A to grip DNA, widening that of the Endo domain 8 A to encircle and bend DNA 45 degrees for cleavage, and completely rebuilding the homodimer interface. The NaeI-DNA structure presents the first example of novel recognition of two copies of one DNA sequence by two different amino acid sequences and two different structural motifs in one polypeptide.  相似文献   

2.
NaeI endonuclease contains a 10-amino acid region with sequence similarity to the active site KXDG motif of DNA ligase except for leucine (Leu-43) in NaeI ((43)LXDG(46)). Changing Leu-43 to lysine abolishes the NaeI endonuclease activity and replaces it with topoisomerase and recombinase activities. Here we report the results of substituting Leu-43 with alanine, arginine, asparagine, glutamate, and histidine. Quantitating specific activities and DNA binding values for the mutant proteins determined the range of amino acids at position 43 that alter NaeI mechanism. Substituting alanine, asparagine, glutamate, and histidine for Leu-43 maintained endonuclease activity, but at a lower level. On the other hand, substituting positively charged arginine, like lysine at position 43, converted NaeI to a topoisomerase with no observable double-strand cleavage activity. The specific activities of NaeI-43K and NaeI-43R and their relative sensitivities to salt, the topoisomerase-inhibiting drug N-[4-(9-acridinylamino)-3-methoxyphenyl]methane-sulfonamide (amsacrine) and single-stranded DNA showed that the two activities are similar. The effect of placing a positive charge at position 43 on NaeI structure was determined by measuring (for NaeI and NaeI-43K) relative susceptibilities to proteolysis, UV, circular dichroism spectra, and temperature melting transitions. The results provide evidence that a positive charge at position 43 induces dramatic changes in NaeI structure that affect both the Endo and Topo domains of NaeI. The identification of four putative DNA ligase motifs in NaeI leads us to speculate that structural changes that superimpose these motifs on the ligase structure may account for the changes in activity.  相似文献   

3.
C C Yang  M D Topal 《Biochemistry》1992,31(40):9657-9664
NaeI endonuclease uses a two-site binding mechanism to cleave substrate DNA: reaction-rate studies imply that occupancy of the second DNA site causes an allosteric change in the protein that enables DNA cleavage at the first site [Conrad, M., & Topal, M. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. Measurements of relative binding affinities for 14-base-pair DNA fragments containing the NaeI recognition sequence GCCGGC and various flanking sequences showed that the two DNA-binding sites are not identical. G.C-rich flanking sequences were preferred by the activator binding site, whereas A.T-rich flanking sequences were preferred by the substrate binding site: GGGTGCCGGCAGGG was preferred 8-fold more by the activator site but 14-fold less by the substrate site than TTTCGCCGGCGTTT. Substitution of pyrimidine or 7-deazapurine for purine immediately 3' to GCCGGC reduced DNA affinity for only the activator site by up to 26-fold, implying that the activator DNA-binding site requires N-7 base contacts immediately flanking GCCGGC. The implications of nonidentical DNA-binding sites, one of which binds a specific DNA site to allosterically activate the other, are discussed.  相似文献   

4.
NaeI endonuclease binding to pBR322 DNA induces looping.   总被引:9,自引:0,他引:9  
Previous work has demonstrated the existence of both resistant and cleavable NaeI sites. Cleavable sites introduced on exogenous DNA can act in trans to increase the catalysis of NaeI endonuclease cleavage at resistant sites without affecting the apparent binding affinity of the enzyme for the resistant site [Conrad, M., & Topal, M. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. This activation suggests allosteric regulation of NaeI cleavage by distant cis- and trans-acting sites in DNAs containing both resistant and cleavable sites. Plasmid pBR322 contains four NaeI sites, at least one of which is resistant to cleavage. Electron microscopy is used here to demonstrate that NaeI endonuclease simultaneously binds to multiple recognition sites in pBR322 DNA to form loops with NaeI protein bound at the loop's base. The maximum number of loops formed with a common base suggests four binding sites per enzyme molecule. Looping was inhibited by addition of enzyme-saturating amounts of double-stranded oligonucleotide containing an NaeI site, whereas another double-strand oligonucleotide without the NaeI site had no effect. The number of loops seen was not above background when double-stranded M13 DNA, which contains only a single NaeI recognition site, was used as substrate.  相似文献   

5.
K Jo  M D Topal 《Nucleic acids research》1996,24(21):4171-4175
Substituting lysine for leucine at position 43 (L43K) transforms NaeI from restriction endonuclease to topoisomerase and makes NaeI hypersensitive to intercalative anticancer drugs. Here we investigated DNA recognition by Nael-L43K. Using DNA competition and gel retardation assays, NaeI-L43K showed reduced affinity for DNA substrate and the ability to bind both single- and double-stranded DNA with a definite preference for the former. Sedimentation studies showed that under native conditions NaeI-L43K, like NaeI, is a dimer. Introduction of mismatched bases into double-stranded DNA significantly increased that DNA's ability to inhibit NaeI-L43K. Wild-type NaeI showed no detectable binding of either single-stranded DNA or mismatched DNA over the concentration range studied. These results demonstrate that the L43K substitution caused a significant change in recognition specificity by NaeI and imply that NaeI-L43K's topoisomerase activity is related to its ability to bind single-stranded and distorted regions in DNA. A mechanism is proposed for the evolution of the NaeI restriction-modification system from a topoisomerase/ligase by a mutation that abolished religation activity and provided a needed change in DNA recognition.  相似文献   

6.
Previous work has described the novel ability to modulate in vitro the activity of restriction endonuclease NaeI from Nocardia aerocoligenes by using cleavable DNA and spermidine [Conrad & Topal (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. In this paper we report the results of a study of 49 type II restriction enzymes from a variety of bacterial species. On the basis of the rates of cleavage observed, we found that in addition to expected cleavable sites a number of enzymes had slow and resistant cognate recognition sites. Resistant sites were identified for BspMI, NaeI, and NarI; slow sites were identified for HpaII, NaeI, and SacII. Cleavage of these sites was found to be significantly enhanced by the addition of cleavable DNA or spermidine. We demonstrate that for BspMI, as for NaeI, activator DNAs increased Vmax without altering Km, whereas for HpaII, NarI, and SacII activator DNAs decreased Km without changing Vmax. Comparison among the Kms for NaeI cleavage of several different substrates demonstrated that distant DNA sequences can affect DNA recognition by the activated enzyme. Our observations extend DNA activation of the Nocardia NaeI endonuclease to restriction endonucleases from Nocardia argentinensis (NarI), Bacillus species M (BspMI), Haemophilus parainfluenza (HpaII), and Streptomyces achromogenes (SacII). In addition, activation has now been found to affect slow as well as resistant recognition sites.  相似文献   

7.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.  相似文献   

8.
Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases.  相似文献   

9.
The heterodimeric restriction endonuclease R.BspD6I from Bacillus species D6 recognizes a pseudosymmetric sequence and cuts both DNA strands outside the recognition sequence. The large subunit, Nt.BspD6I, acts as a type IIS site-specific monomeric nicking endonuclease. The isolated small subunit, ss.BspD6I, does not bind DNA and is not catalytically active. We solved the crystal structures of Nt.BspD6I and ss.BspD6I at high resolution. Nt.BspD6I consists of three domains, two of which exhibit structural similarity to the recognition and cleavage domains of FokI. ss.BspD6I has a fold similar to that of the cleavage domain of Nt.BspD6I, each containing a PD-(D/E)XK motif and a histidine as an additional putative catalytic residue. In contrast to the DNA-bound FokI structure, in which the cleavage domain is rotated away from the DNA, the crystal structure of Nt.BspD6I shows the recognition and cleavage domains in favorable orientations for interactions with DNA. Docking models of complexes of Nt.BspD6I and R.BspD6I with cognate DNA were constructed on the basis of structural similarity to individual domains of FokI, R.BpuJI and HindIII. A three-helix bundle forming an interdomain linker in Nt.BspD6I acts as a rigid spacer adjusting the orientations of the spatially separated domains to match the distance between the recognition and cleavage sites accurately.  相似文献   

10.
Endo.SceI is a eukaryotic sequence-specific endonuclease of 120 kDa that causes sequence-specific double-stranded scission of DNA. Unlike results with restriction enzymes, we found a consensus sequence around the cleavage sites for Endo.SceI instead of a common sequence. We searched for conditions for studying the binding of Endo.SceI to DNA other than cutting. Under optimized conditions including gel mobility shift assay, Endo.SceI exhibited sequence-specific binding to a short double-stranded DNA (41 base pairs) containing a cleavage site and the DNA reisolated from the protein-DNA complex was not cleaved. The analysis of the complex of Endo.SceI and DNA isolated by the gel mobility shift experiments showed that the DNA-binding entity in the Endo.SceI preparation does have Endo.SceI activity and consists of an equal amount of 75-kDa and 50-kDa polypeptides. Based on this observation and those from previous studies, we conclude that Endo.SceI is a heterodimer of the 75-kDa and 50-kDa subunits. Under the present assay conditions, Endo.SceI did not show binding to single-stranded DNA having the same sequence of either plus or minus strand of the double-stranded DNA containing the cleavage site (the 41-bp DNA). Endo.SceI showed significantly higher affinity for the consensus sequence than the major cleavage site in pBR322 DNA. Unlike the cleavage of DNA by Endo.SceI which requires Mg2+, this sequence-specific binding is independent of but stimulated by Mg2+.  相似文献   

11.
The homing endonuclease PI-SceI from Saccharo myces cerevisiae consists of two domains. The protein splicing domain I catalyzes the excision of the mature endonuclease (intein) from a precursor protein and the religation of the flanking amino acid sequences (exteins) to a functional protein. Furthermore, domain I is involved in binding and recognition of the specific DNA substrate. Domain II of PI-SceI, the endonuclease domain, which is structurally homologous to other homing endonucleases from the LAGLIDADG family, harbors the endonucleolytic center of PI-SceI, which in vivo initiates the homing process by introducing a double-strand cut in the ~35 bp recognition sequence. At 1.35 Å resolution, the crystal structure of PI-SceI domain I provides a detailed view of the part of the protein that is responsible for tight and specific DNA binding. A geometry-based docking of the 75° bent recognition sequence to the full-length protein implies a conformational change or hinge movement of a subdomain of domain I, the tongs part, that is predicted to reach into the major groove near base pairs +16 to +18.  相似文献   

12.
13.
Many restriction enzymes require binding of two copies of a recognition sequence for DNA cleavage, thereby introducing a loop in the DNA. We investigated looping dynamics of Type IIE restriction enzymes NaeI and NarI by tracking the Brownian motion of single tethered DNA molecules. DNA containing two endonuclease recognition sites spaced a few 100 bp apart connect small polystyrene beads to a glass surface. The position of a bead is tracked through video microscopy. Protein-mediated looping and unlooping is then observed as a sudden specific change in Brownian motion of the bead. With this method we are able to directly follow DNA looping kinetics of single protein–DNA complexes to obtain loop stability and loop formation times. We show that, in the absence of divalent cations, NaeI induces DNA loops of specific size. In contrast, under these conditions NarI mainly creates non-specific loops, resulting in effective DNA compaction for higher enzyme concentrations. Addition of Ca2+ increases the NaeI-DNA loop lifetime by two orders of magnitude and stimulates specific binding by NarI. Finally, for both enzymes we observe exponentially distributed loop formation times, indicating that looping is dominated by (re)binding the second recognition site.  相似文献   

14.
Chan SH  Bao Y  Ciszak E  Laget S  Xu SY 《Nucleic acids research》2007,35(18):6238-6248
Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5′ half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein–DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions.  相似文献   

15.
A eukaryotic sequence-specific endonuclease, Endo.SceI, causes sequence-specific double-stranded scission of double-stranded DNA to produce cohesive ends with four bases protruding at the 3' termini. Unlike in the case of restriction enzymes, an asymmetric 26-base pair consensus sequence was found around the cleavage site for Endo.SceI instead of a common sequence. We analyzed the base pairs that interacted with Endo.SceI on the recognition of its cleavage sites. A region comprising -10 through +16 base pairs from the center of the cleavage site was shown to be essential and sufficient for the sequence-specific cutting with Endo.SceI by experiments involving synthesized DNAs. Methylation interference experiments indicate that bases in the region comprising the +7 through +14 base pairs is involved in close contact with Endo.SceI in its recognition of the cleavage site. This +7 through +14-base pair region overlaps the most stringently conserved sequence in the consensus sequence for the cleavage site, suggesting that this region constitutes the core for the recognition by Endo.SceI.  相似文献   

16.
Endonuclease NaeI cleaves DNA using a two-site mechanism. The DNA-binding sites are nonidentical: they recognize different families of flanking sequences. A unique NaeI site that is resistant to cleavage resides in M13 double-stranded DNA. NaeI can be activated to cleave this site by small DNA fragments containing one or more NaeI sites. These activators are not practical for genetic engineering because unphosphorylated activators that are consumed during the cleavage of substrate give ends that may interfere with subsequent ligations. We show that a DNA fragment containing phosphorothioate linkages at the NaeI scissile bonds (S-activator) is not cleaved by NaeI, even though this S-activator binds to the substrate site. The S-activator activates NaeI to cleave M13 DNA under conditions that completely exhaust unsubstituted activator. These results demonstrate that activation is not coupled to cleavage of activator, that NaeI reverts to its inactive state soon after dissociation of the EA complex, and that S-activator makes for a nondepletable activator during prolonged incubations.  相似文献   

17.
The EcoRV restriction endonuclease cleaves DNA not only at its recognition sequence but also at most other sequences that differ from the recognition site by one base pair. Compared to the reaction at the recognition site, the reactions at noncognate sites are slow but 1 out of the 12 noncognate sites on the plasmid pAT153 is cleaved more than 50 times faster than any other. The increase in the reaction rate at the preferred noncognate site, relative to other sites, was caused by the DNA sequences in the 4 base pairs from either side of the site. For enhanced activity by EcoRV, particular bases were needed immediately adjacent to the site, inside the DNA-protein complex. At these loci, the protein interacts with the phosphate groups in the DNA and the flanking sequence may control the activity of the enzyme by determining the conformation of the DNA, thus aligning the phosphate contacts. But the preferential cleavage also depended on sequences further away from the site, at loci outside the complex. At external positions, beyond the reach of the protein, the EcoRV enzyme required flanking sequences that give rise to flexibility in DNA conformation. These may facilitate the distortion of the DNA required for catalysis by EcoRV.  相似文献   

18.
19.
J Heitman  P Model 《The EMBO journal》1990,9(10):3369-3378
The EcoRI restriction endonuclease cleaves DNA molecules at the sequence GAATTC. We devised a genetic screen to isolate EcoRI mutants with altered or broadened substrate specificity. In vitro, the purified mutant enzymes cleave both the wild-type substrate and sites which differ from this by one nucleotide (EcoRI star sites). These mutations identify four residues involved in substrate recognition and catalysis that are different from the amino acids proposed to recognize the substrate based on the EcoRI-DNA co-crystal structure. In fact, these mutations suppress EcoRI mutants altered at some of the proposed substrate binding residues (R145, R200). We argue that these mutations permit cleavage of additional DNA sequences either by perturbing or removing direct DNA-protein interactions or by facilitating conformational changes that allosterically couple substrate binding to DNA scission.  相似文献   

20.
The SalGI restriction endonuclease. Enzyme specificity.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have analysed the kinetics of DNA cleavage in the reaction between the SalGI restriction endonuclease and plasmid pMB9. This reaction is subject to competitive inhibition by DNA sequences outside the SalGI recognition site; we have determined the Km and Vmax. for the reaction of this enzyme at its recognition site and the KI for its interaction at other DNA sequences. We conclude that the specificity of DNA cleavage by the enzyme is only partly determined by the discrimination it shows for binding at its recognition sequence compared with binding to other DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号