首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. F. Kemp  S. Lee    J. LaRoche 《Applied microbiology》1993,59(8):2594-2601
In past studies of enteric bacteria such as Escherichia coli, various measures of cellular RNA content have been shown to be strongly correlated with growth rate. We examined this correlation for four marine bacterial isolates. Isolates were grown in chemostats at four or five dilution rates, yielding growth rates that spanned the range typically determined for marine bacterial communities in nature (μ = 0.01 to 0.25 h-1). All measures of RNA content (RNA cell-1, RNA:biovolume ratio, RNA:DNA ratio, RNA:DNA:biovolume ratio) were significantly different among isolates. Normalizing RNA content to cell volume substantially reduced, but did not eliminate, these differences. On average, the correlation between μ and the RNA:DNA ratio accounted for 94% of variance when isolates were considered individually. For data pooled across isolates (analogous to an average measurement for a community), the ratio of RNA:DNA μm-3 (cell volume) accounted for nearly half of variance in μ (r2 = 0.47). The maximum RNA:DNA ratio for each isolate was extrapolated from regressions. The regression of (RNA:DNA)/(RNA:DNA)max on μ was highly significant (r2 = 0.76 for data pooled across four isolates) and virtually identical for three of the four isolates, perhaps reflecting an underlying common relationship between RNA content and growth rate. The dissimilar isolate was the only one derived from sediment. Cellular RNA content is likely to be a useful predictor of growth rate for slowly growing marine bacteria but in practice may be most successful when applied at the level of individual species.  相似文献   

2.
DNA polymerase μ (Pol μ) is a DNA-dependent DNA polymerase closely related to terminal deoxynucleotidyl transferase (TdT), and prone to induce template/primer misalignments and misincorporation. In addition to a proposed general role in non-homologous end joining of double-strand breaks, its mutagenic potential and preferential expression in secondary lymphoid tissues support a role in somatic hypermutation (SHM) of immunoglobulin genes. Here, we show that human Pol μ protein is expressed in the nucleus of centroblasts obtained from human tonsils, forming a characteristic foci pattern resembling that of other DNA repair proteins in response to DNA damage. Overexpression of human Pol μ in Ramos cells, in which the SHM process is constitutive, augmented the somatic mutations specifically at the variable (V) region of the immunoglobulin genes. The nature of the mutations introduced, mostly base substitutions, supports the contribution of Pol μ to mutation of G and C residues during SHM. In vitro analysis of Pol μ misincorporation on specific templates, that mimic DNA repair intermediates and correspond to mutational hotspots, indicated that many of the mutations observed in vivo can be explained by the capacity of Pol μ to induce transient template/primer misalignments.  相似文献   

3.
Stem segments containing a single node and quiescent lateral bud (tiller) were excised from the bases of oat shoots (cv. `Victory') and used to study the effects of plant hormones on release of lateral buds and development of adventitious root primordia. Kinetin (10−5 and 10−6 molar) stimulates development of tillers and inhibits development of root primordia, whereas indoleacetic acid (IAA) (10−5 and 10−6 molar) causes the reverse effects. Abscisic acid strongly inhibits kinetin-induced tiller bud release and elon-gation and IAA-induced adventitious root development. IAA, in combination with kinetin, also inhibits kinetin-induced bud prophyll (outermost leaf of the axillary bud) elongation. The IAA oxidase cofactor p-coumaric acid stimulates lateral bud release; the auxin transport inhibitor 2,3,5-triiodo-benzoic acid and the antiauxin α (p-chlorophenoxy)-isobutyric acid inhibit IAA-induced adventitious root formation. Gibberellic acid is synergistic with kinetin in the elongation of the bud prophyll. In intact oat plants, tiller release is induced by shoot decapitation, geostimulation, or the emergence of the inflorescence. Results shown support the apical dominance theory, namely, that the cytokinin to auxin ratio plays a decisive role in determining whether tillers are released or adventitious roots develop. They also indicate that abscisic acid and possibly gibberellin may act as modulator hormones in this system.  相似文献   

4.
5.
DNA vaccines formulated with the cationic lipid-based adjuvant Vaxfectin induce protective immunity in macaques after intradermal (i.d.) or intramuscular (i.m.) delivery of 0.5 to 1 mg of codon-optimized DNA encoding the hemagglutinin (H) and fusion (F) proteins of measles virus (MeV). To characterize the effect of Vaxfectin at lower doses of H+F DNA, rhesus macaques were vaccinated twice with 20 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.m. or 100 μg of DNA plus phosphate-buffered saline (PBS) i.m. using a needleless Biojector device. The levels of neutralizing (P = 0.036) and binding (P = 0.0001) antibodies were higher after 20 or 100 μg of DNA plus Vaxfectin than after 100 μg of DNA plus PBS. Gamma interferon (IFN-γ)-producing T cells were induced more rapidly than antibody, but were not improved with Vaxfectin. At 18 months after vaccination, monkeys were challenged with wild-type MeV. None developed rash or viremia, but all showed evidence of infection. Antibody levels increased, and IFN-γ- and interleukin-17-producing T cells, including cells specific for the nucleoprotein absent from the vaccine, were induced. At 3 months after challenge, MeV RNA was detected in the leukocytes of two monkeys. The levels of antibody peaked 2 to 4 weeks after challenge and then declined in vaccinated animals reflecting low numbers of bone marrow-resident plasma cells. Therefore, Vaxfectin was dose sparing and substantially improved the antibody response to the H+F DNA vaccine. This immune response led to protection from disease (rash/viremia) but not from infection. Antibody responses after challenge were more transient in vaccinated animals than in an unvaccinated animal.  相似文献   

6.
Mode of Action of Lomofungin   总被引:7,自引:0,他引:7       下载免费PDF全文
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

7.
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

8.
The repair of DNA double-strand breaks (DSB) requires processing of the broken ends to complete the ligation process. Recently, it has been shown that DNA polymerase μ (polμ) and DNA polymerase λ (polλ) are both involved in such processing during non-homologous end joining in vitro. However, no phenotype was observed in animal models defective for either polμ and/or polλ. Such observations could result from a functional redundancy shared by the X family of DNA polymerases. To avoid such redundancy and to clarify the role of polμ in the end joining process, we generated cells over-expressing the wild type as well as an inactive form of polμ (polμD). We observed that cell sensitivity to ionizing radiation (IR) was increased when either polμ or polμD was over-expressed. However, the genetic instability in response to IR increased only in cells expressing polμD. Moreover, analysis of intrachromosomal repair of the I-SceI-induced DNA DSB, did not reveal any effect of either polμ or polμD expression on the efficiency of ligation of both cohesive and partially complementary ends. Finally, the sequences of the repaired ends were specifically affected when polμ or polμD was over-expressed, supporting the hypothesis that polμ could be involved in the repair of a DSB subset when resolution of junctions requires some gap filling.  相似文献   

9.
A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sulphate and 11.84 μM silver nitrate. Elongated shoots were harvested and successful rooting of microshoots achieved on MS media supplemented with 9.84 μM IBA, with 81.1 % rooting. Remaining shoot buds sub-cultured for further multiplication and elongation. Each subculture produced eight to nine elongated microshoots up to four subcultures. The rooted microshoots were successfully hardened and transferred to field.  相似文献   

10.
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells.  相似文献   

11.
[3H]thymidine incorporation, the rate of reduction of iodonitrotetrazolium violet (INT) to INT formazan normalized to DNA, and the ratio of ATP to DNA were adapted to measure the activity of attached and unattached microbial assemblages of Bayboro Harbor, Fla. Activity measurements by [3H]thymidine incorporation were made of cells attached to polystyrene culture dishes, in unfiltered water samples, and in the <1-μm-filtered fraction. In most cases, the activity of attached cells was greater than that of unattached cells either in unfiltered water samples or in the <1-μm fraction. The calculated thymidine incorporation rates for cells in the >1-μm fraction were higher than those for cells either in unfiltered water or in the <1-μm-filtered fraction. By the rate of reduction of INT to INT formazan normalized to DNA and by ATP-to-DNA ratios, attached cells were also more active than cells in unfiltered water samples. These results indicate that the microenvironment afforded by attachment is a more beneficial habitat for microbial growth. Reasons for greater activity by natural populations of attached bacteria are discussed.  相似文献   

12.
Roots and shoots of corn seedlings (Zea mays L. var. Dixie 18) germinated in trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) solutions are characterized by radial enlargement of the cortical cells and by multinucleate cells in the meristematic regions. Trifluralin inhibits elongation of Avena coleoptile sections at concentrations of 0.1 μm to 10 μm. Synthesis of DNA, RNA, and protein is suppressed in the root tips while no significant effect is noticeable in the shoots of corn germinated in trifluralin. A 32P time-course study of 48, 72, and 96 hours utilizing phenol extraction and MAK column separation of corn root and shoot nucleic acids showed suppression of 32P incorporation in the treated roots; however, the 72 and 96 hour treated shoots incorporated a much greater amount than the control with most of the increased incorporation found in the sRNA and DNA fractions. The increased activity in the DNA may be due to a high G-C type DNA. No selective suppression or enhancement of any particular RNA species was noticed in the treated plants.  相似文献   

13.
We have designed a doxycycline-regulated form of the H1 promoter of RNA polymerase III that allows the inducible knockdown of gene expression by small interfering RNAs (siRNAs). As a proof-of-principle, we have targeted β-catenin in colorectal cancer (CRC) cells. T-cell factor (TCF) target-gene expression is induced by accumulated β-catenin, and is the main transforming event in these cells. We have shown previously that the disruption of β-catenin/TCF4 activity in CRC cells by the overexpression of dominant-negative TCF induces rapid G1 arrest and differentiation. Stable integration of our inducible siRNA vector allowed the rapid production of siRNAs on doxycycline induction, followed by specific downregulation of β-catenin. In these CRC cells, TCF reporter-gene activity was inhibited, and G1 arrest and differentiation occurred. The inhibition of two other genes using this vector system shows that it should be useful for the inducible knockdown of gene expression.  相似文献   

14.
We developed a 12-h Salmonella detection method, based on 8 h of preenrichment, followed by automated DNA extraction and a sensitive real-time PCR. The method was optimized to obtain the highest possible yield of cells and DNA. The growth of different Salmonella strains in various preenrichment media and the effects of adding growth-promoting and selective reagents were explored, taking into account their PCR compatibility. The effects of (i) analyzing larger volumes (1 to 5 ml) from preenriched samples and introducing wash steps prior to DNA extraction, (ii) regulating the amount of paramagnetic particles (increasing it from 60 to 90 μl) in the DNA extraction, (iii) eluting the DNA in reduced volumes (25 or 50 μl rather than 100 μl), and (iv) increasing the PCR template volume (from 5 to 20 μl) were investigated. After 8 h of preenrichment, buffered peptone water yielded the highest number of salmonellae. When analyzing minced meat samples, positive effects of increasing the initial sampling volume from 1 to 5 ml and increasing the amount of paramagnetic particles to 90 μl were observed. However, washing the pellet and eluting the DNA in reduced volumes (25 and 50 μl) had no positive effects and resulted in decreased reproducibility. Increasing the amount of PCR template DNA from 5 to 20 μl improved the threshold cycle value by approximately 2. The improved 12-h PCR method was successfully compared to a reference culture method with 100 minced meat and poultry samples, with a relative accuracy of 99%, a relative sensitivity of 98%, and a relative specificity of 100%.  相似文献   

15.
Cell-free DNA (cfDNA) fragments, detected in blood and in other biological fluids, are released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the detection of many diseases such as some cancers and gynecological and obstetrics disorders. In this study, we investigated if cfDNA levels in follicular fluid (FF) samples from in vitro fertilization (IVF) patients, could be related to their ovarian reserve status, controlled ovarian stimulation (COS) protocols and IVF outcomes. Therefore, 117 FF samples were collected from women (n = 117) undergoing IVF/Intra-cytoplasmic sperm injection (ICSI) procedure and cfDNA concentration was quantified by ALU-quantitative PCR. We found that cfDNA level was significantly higher in FF samples from patients with ovarian reserve disorders (low functional ovarian reserve or polycystic ovary syndrome) than from patients with normal ovarian reserve (2.7 ± 2.7 ng/μl versus 1.7 ± 2.3 ng/μl, respectively, p = 0.03). Likewise, FF cfDNA levels were significant more elevated in women who received long ovarian stimulation (> 10 days) or high total dose of gonadotropins (≥ 3000 IU/l) than in women who received short stimulation duration (7–10 days) or total dose of gonadotropins < 3000 IU/l (2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008; 2.2 ± 2.3 ng/μl versus 1.5 ± 2.1 ng/μl, p = 0.01, respectively). Finally, FF cfDNA level was an independent and significant predictive factor for pregnancy outcome (adjusted odds ratio = 0.69 [0.5; 0.96], p = 0.03). In multivariate analysis, the Receiving Operator Curve (ROC) analysis showed that the performance of FF cfDNA in predicting clinical pregnancy reached 0.73 [0.66–0.87] with 88% specificity and 60% sensitivity. CfDNA might constitute a promising biomarker of follicular micro-environment quality which could be used to predict IVF prognosis and to enhance female infertility management.  相似文献   

16.
We applied transmission electron microscopy and densitometric image analysis to measure the cell volume (V) and dry weight (DW) of single bacterial cells. The system was applied to measure the DW of Escherichia coli DSM 613 at different growth phases and of natural bacterial assemblages of two lakes, Piburger See and Gossenköllesee. We found a functional allometric relationship between DW (in femtograms) and V (in cubic micrometers) of bacteria (DW = 435 · V0.86); i.e., smaller bacteria had a higher ratio of DW to V than larger cells. The measured DW of E. coli cells ranged from 83 to 1,172 fg, and V ranged from 0.1 to 3.5 μm3 (n = 678). Bacterial cells from Piburger See and Gossenköllesee (n = 465) had DWs from 3 fg (V = 0.003 μm3) to 1,177 fg (V = 3.5 μm3). Between 40 and 50% of the cells had a DW of less than 20 fg. By assuming that carbon comprises 50% of the DW, the ratio of carbon content to V of individual cells varied from 466 fg of C μm−3 for Vs of 0.001 to 0.01 μm3 to 397 fg of C μm−3 (0.01 to 0.1 μm3) and 288 fg of C μm−3 (0.1 to 1 μm3). Exponentially growing and stationary cells of E. coli DSM 613 showed conversion factors of 254 fg of C μm−3 (0.1 to 1 μm3) and 211 fg of C μm−3 (1 to 4 μm3), respectively. Our data suggest that bacterial biomass in aquatic environments is higher and more variable than previously assumed from volume-based measurements.  相似文献   

17.
AimTo determine the optimal cut-off value of serum total adiponectin for managing the risk of developing metabolic syndrome (MetS) in male Japanese workers.MethodsA total of 365 subjects without MetS aged 20–60 years were followed up prospectively for a mean of 3.1 years. The accelerated failure-time model was used to estimate time ratio (TR) and cut-off value for developing MetS.ResultsDuring follow-up, 45 subjects developed MetS. Age-adjusted TR significantly declined with decreasing total adiponectin level (≤ 4.9, 5.0–6.6, 6.7–8.8 and ≥ 8.9 μg/ml, P for trend = 0.003). In multivariate analyses, TR of MetS was 0.12 (95% CI 0.02–0.78; P = 0.03) in subjects with total adiponectin level of 5.0–6.6 μg/ml, and 0.15 (95% CI 0.02–0.97; P = 0.047) in subjects with total adiponectin level ≤ 4.9 μg/ml compared with those with total adiponectin level ≥ 8.9 μg/ml. The accelerated failure-time model showed that the optimal cut-off value of total adiponectin for managing the risk of developing MetS was 6.2 μg/ml. In the multivariate-adjusted model, the mean time to the development of MetS was 78% shorter for total adiponectin level ≤ 6.2 μg/ml compared with > 6.2 μg/ml (TR 0.22, 95% CI: 0.08–0.64, P = 0.005).ConclusionOur findings suggest that the cut-off value for managing the risk of developing MetS is 6.2 μg/ml in male Japanese workers. Subjects with total adiponectin level ≤ 6.2 μg/ml developed MetS more rapidly than did those with total adiponectin level > 6.2 μg/ml.  相似文献   

18.
DNA, RNA, and protein concentrations from starved ANT-300 cell populations grown at different growth rates fluctuated corresponding to the three stages of starvation-survival on total and viable cell bases. During stage 1 of starvation-survival, two to three peaks in the concentration levels for all three macromolecules were characteristic. During stage 2, DNA per total cell dropped to between 4.2 and 8.3% of the original amount for all of the cell populations examined, and it stabilized throughout stage 3. The decrease in DNA per cell was also observed in electron micrographs of cellular DNA in unstarved compared with starved cells. The fluctuations of RNA and protein per total cell concentrations observed during stage 2 coincided in all cases, except for the cells from dilution rate (D) = 0.015 h−1. This ANT-300 cell population showed a decrease in RNA per total cell to only 29.2% and an increase in protein to 129.7% of the original amount after 98 days of starvation. During stage 3, DNA, RNA, and protein concentrations per total cell also stabilized to continuous levels. Cells from the faster-growth-rate cell populations of D = 0.170 h−1 and batch culture had elevated protein per total cell concentrations, which remained primarily residual during the starvation period. Starved cells from D = 0.015 h−1 had estimated nucleoid and cell volumes of 0.018 and 0.05 μm3, respectively, yielding a nucleoid volume/cell volume ratio of 0.40. We consider these data to indicate that slow-growth-rate cells are better adapted for starvation-survival than their faster-growth-rate counterparts.  相似文献   

19.
Bacillus megaterium NRRL B-1368 cells and spores were produced on Trypticase Soy Broth (TSB) and Agar (TSA) containing 3.8 μg of aflatoxin B1 per ml, analyzed for selected chemical constituents, and compared to cells and spores of B. megaterium produced on nontoxic Trypticase Soy Media. There was an initial 30% kill of cells after inoculation into toxic TSB and during the first 3.5 hr of incubation followed by a logarithmic growth phase in which the generation time was 75 min as compared to 20 min for the control culture. Chemical analyses revealed an increase in protein, deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) on both a per cell basis and a per cent dry weight basis when B. megaterium was grown in toxic TSB. There was a concurrent decrease in the total amounts of cellular protein, DNA, and RNA synthesized in toxic TSB. Amino acid analyses of control and test cell walls showed little, if any, difference in cell wall composition. About 97% sporulation of B. megaterium occurred after 3 days on nontoxic TSA although 6 days were required to attain 65% sporulation on toxic TSA. Germination of spores was not inhibited by 4.0 μg of aflatoxin per ml but outgrowth was. No significant differences were observed in the heat resistance, protein, DNA, RNA, or dipicolinic acid content of spores formed on toxic TSA and nontoxic TSA.  相似文献   

20.
Caged antisense oligodeoxynucleotides (asODNs) are synthesized by linking two ends of linear oligodeoxynucleotides using a photocleavable linker. Two of them (H30 and H40) have hairpin-like structures which show a large difference in thermal stability (ΔTm = 17.5°C and 11.6°C) comparing to uncaged ones. The other three (C20, C30 and C40) without stable secondary structures have the middle 20 deoxynucleotides complementary to 40-mer RNA. All caged asODNs have restricted opening which provides control over RNA/asODN interaction. RNase H assay results showed that 40-mer RNA digestion could be photo-modulated 2- to 3-fold upon light-activation with H30, H40, C30 and C40, while with C20, RNA digestion was almost not detectable; however, photo-activation triggered >20-fold increase of RNA digestion. And gel shift assays showed that it needed >0.04 μM H40 and 0.5 μM H30 to completely bind 0.02 μM 40-mer RNA, and for C40 and C30, it needed >0.2 μM and 0.5 μM for 0.02 μM 40-mer RNA binding. However, even 4 μM C20 was not able to fully bind the same concentration of 40-mer RNA. By simple adjustment of ring size of caged asODNs, we could successfully photoregulate their hybridization with mRNA and target RNA hydrolysis by RNase H with light activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号