首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tight junctions (TJs), hallmark structures of one-layered epithelia and of endothelia, are of central biological importance as intramembranous "fences" and as hydrophobic "barriers" between lumina represented by liquid- or gas-filled spaces on the one hand and the mesenchymal space on the other. They have long been thought to be absent from stratified epithelia. Recently, however, constitutive TJ proteins and TJ-related structures have also been identified in squamous stratified epithelia, including the epidermis, where they occur in special positions, most prominently in the uppermost living epidermal cell layer, the stratum granulosum. Much to our surprise, however, we have now also discovered several major TJ proteins (claudins 1 and 4, occludin, cingulin, symplekin, protein ZO-1) and TJ-related structures in specific positions of formations of epithelium-derived tissues that lack any lumen and do not border on luminal or body surfaces. Using immunohistochemistry and electron microscopy we have localized TJ proteins and structures in peripheral cells of the Hassall's corpuscles of human and bovine thymi as well as in specific central formations of tumor nests in squamous cell carcinomas, including the so-called "horn pearls". Such structures have even been found in carcinoma metastases. In carcinomas, they often seem to separate certain tumor regions from others or from stroma. The structural significance and the possible functional relevance of the locally restricted synthesis of TJ proteins and of the formations of TJ-related structures are discussed. It is proposed to include the determination of the presence or absence of such proteins and structures in the diagnostic program of tumor pathology.  相似文献   

4.
The formation of endothelial tight junctions (TJs) is crucial in blood-brain barrier (BBB) differentiation, and the expression and targeting of TJ-associated proteins mark the beginning of BBB functions. Using confocal microscopy, this study analyzed endothelial TJs in adult human cerebral cortex and the fetal telencephalon and leptomeninges in order to compare the localization of two TJ-associated transmembrane proteins, occludin and claudin-5. In the arterioles and microvessels of adult brain, occludin and claudin-5 form continuous bands of endothelial immunoreactivity. During fetal development, occludin and claudin-5 immunoreactivity is first detected as a diffuse labeling of endothelial cytoplasm. Later, at 14 weeks, the immunosignal for both proteins shifts from the cytoplasm to the interface of adjacent endothelial cells, forming a linear, widely discontinuous pattern of immunoreactivity that achieves an adult-like appearance within a few weeks. These results demonstrate that occludin and claudin-5 expression is an early event in human brain development, followed shortly by assembly of both proteins at the junctional areas. This incremental process suggests more rapid establishment of the human BBB, consistent with its specific function of creating a suitable environment for neuron differentiation and neurite outgrowth during neocortical histogenesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0665-1Daniela Virgintino and Mariella Errede contributed equally to this work  相似文献   

5.
6.
In previous studies we demonstrated uniform strong expression of CD24 in the epithelial attachment to the tooth and in the migrating epithelium of the periodontitis lesion. Titers of serum antibodies auto-reactive with CD24 peptide correlated with reduced severity of periodontal disease. In the present study an epithelial culture model with close correspondence for expression patterns for tight junction components in periodontal epithelia was used. Ligation of CD24 expressed by oral epithelial cells with an anti-CD24 antibody induced formation of tight junctions and live-cell imaging confirmed that paracellular diffusion of fluorochrome-labeled dextran was reduced. Expression of mRNA and protein for zona occludens-1, -2, junction adhesion molecule-A (JAM-A), occludin and claudins-1, -4, -8, -15, -18 was significantly increased following ligation of CD24 but only claudins-4 and -15, JAM-A, occludin and zona occludens-1 and -2 were increased at cell contacts. This change in expression patterns reflected that observed between the epithelium of the periodontal lesion and that of the healthy gingival attachment. In the model system, response profiles to kinase inhibitors indicated a key role of c-Src kinase activation in the development of diffusion-limiting tight junction complexes. Activation was confirmed by demonstrating concomitant phosphorylation of the kinase. Pre-incubation with antibodies against JAM-A and claudin-15 prevented barrier-enhancing effects of anti-CD24 antibodies while pre-incubation with antibody to claudin-4 was partially effective. It is concluded that antibodies to CD24 facilitate expression and location of JAM-A, claudins-4 and -15 that mediate enhanced epithelial barrier function in a protective response against bacterial products.  相似文献   

7.
Differential centrifugation of Triton X-100 or CHAPS lysates from control and cholesterol (CH)-depleted MDCK II cells, segregated integral tight junction (TJ) proteins associated with detergent-resistant membranes (DRMs) into two groups. Group A proteins (occludin, claudin-2 and -3) were detected in large, intermediate and small aggregates in both detergents, whereas group B proteins (claudin-1, -4 and -7) were observed in small aggregates in TX-100 and in intermediate and small aggregates in CHAPS. Depletion of CH altered the distribution of group A and B proteins among the three size categories in a detergent-specific manner. In lysates produced with octyl glucoside, a detergent that selectively extracts proteins from DRMs, group A proteins were undetectable in large aggregates and CH depletion did not alter the distribution of either group A or B proteins in intermediate or small aggregates. Neither occludin (group A) nor claudin-1 (group B) was in intimate enough contact with CH to be cross-linked to [(3)H]-photo-cholesterol. However, antibodies to either TJ protein co-immunoprecipitated caveolin-1, a CH-binding protein. Unlike claudins, occludin's presence in TJs and DRMs did not require palmitoylation. Equilibrium density centrifugation on discontinuous OptiPrep gradients revealed detergent-related differences in the densities of TJ-bearing DRMs. There was little or no change in those densities after CH depletion. Removing CH from the plasma membrane increased tyrosine and threonine phosphorylation of occludin, and transepithelial electrical resistance (TER) within 30 min. After 2 h of CH efflux, phospho-occludin levels and TER fell below control values. We conclude that the association of integral TJ proteins with DRMS, pelleted at low speeds, is partially CH-dependent. However, the buoyant density of TJ-associated DRMs is a function of the detergent used and is insensitive to decreases in CH.  相似文献   

8.
9.
Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.  相似文献   

10.
11.
The polarization of hepatocytes involves formation of functionally distinct sinusoidal (basolateral) and bile canalicular (apical) plasma membrane domains that are separated by tight junctions. Although various molecular mechanisms and signaling cascades including polarity complex proteins may contribute to bile canalicular formation in hepatocytes, the role of tight junction proteins in bile canalicular formation remains unclear. To investigate the role of the integral tight junction protein claudin-2 in bile canalicular formation, we depleted claudin-2 expression by siRNA in the polarized hepatic cell line WIF-B9 after treatment with or without phenobarbital. When WIF-B9 cells were treated with phenobarbital, claudin-2 expression and tight junction strands were markedly increased together with induction of canalicular formation with a biliary secretion function. Knockdown of claudin-2 prevented bile canalicular formation after treatment with or without phenobarbital. Furthermore, knockdown of claudin-2 caused a change from a hepatic polarized phenotype to a simple polarized phenotype, together with upregulation of pLKB1, pMAPK, pAkt and pp38 MAPK, but not pMLC, PTEN or cdc42, and an increase of intracellular vacuoles, which were present before bile canalicular formation. These results suggest that claudin-2 may affect not only the bile canalicular seal but also bile canalicular formation.  相似文献   

12.
Pretreatment with the nucleoside antibiotic tunicamycin was found to protect cultured renal epithelial cells in the face of ATP-depletion, in large part by preserving junctional and cellular architecture. Tunicamycin pretreatment of Madin-Darby canine kidney cells not only preserved E-cadherin staining at the plasma membrane, but also inhibited ATP-depletion-mediated E-cadherin degradation. Electron microscopic analysis, together with the preservation of the staining patterns of the tight junction marker ZO-1, the apical/microvillar marker gp135, and basolateral marker Na/K-ATPase suggested that tunicamycin preserved the junctional complex and the polarized epithelial cell phenotype. Tunicamycin pretreatment also prevented reductions in the filamentous actin content of the cells, as well as preserving Golgi architecture. Moreover, a quantitative measure of cell adhesion demonstrated that tunicamycin pretreatment resulted in a fivefold increase in attachment of cells to the substratum (77% versus 16%). Thus, pretreatment with tunicamycin protects polarized epithelial cells from ischemic injury through the preservation of epithelial cell architecture, intercellular junctions, and cell-substratum interactions in the setting of intracellular ATP-depletion.  相似文献   

13.
Terminal differentiation of squamous epithelia is usually characterized by the synthesis of a subset of cytokeratins (CKs) in suprabasal cell layers which become major components of the intermediate filament (IF) bundle cytoskeleton of the maturing cells. We have examined the significance, molecular nature and pattern of synthesis of the elusive human CK 2 by analyzing mRNAs from certain stratified epithelia, using in vitro translation, cDNA cloning. Northern blotting and in situ hybridization. We show that genuine polypeptides with the typical gel electrophoretic mobility of CK 2 exist but that the CK 2 present in the masticatory epithelia of hard palate and gingiva (CK 2p) differs from that found in epidermis (CK 2e) by its amino acid sequence and is encoded by a different gene. The two CKs 2 show only limited sequence homology (71% identical amino acid positions in the rod domain), and the oral CK 2p is more closely related to the corneal CK 3 (86%), as is also indicated by the cross-reaction of monoclonal antibody AE5. By in situ hybridization and immunocytochemistry, we further show that both CK 2e and CK 2p are expressed only in suprabasal cell layers of the specific epithelia where they can accumulate to represent major cytoskeletal proteins. We discuss this tissue-type specificity of CK 2 synthesis in otherwise morphologically and biochemically similar epithelia in relation to differences of IF appearance and packing in upper strata between epidermal and masticatory epithelia as well as to tissue formation and differentiation during development.  相似文献   

14.
Haematogenous spread is a key step in the development of Acanthamoeba granulomatous encephalitis, however it is not clear how circulating amoebae cross the blood–brain barrier to enter the CNS to produce disease. Using the primary human brain microvascular endothelial cells (HBMEC), which constitute the blood–brain barrier, here it is shown that Acanthamoeba abolishes the HBMEC transendothelial electrical resistance. Using traversal assays, it was observed that Acanthamoeba crosses the HBMEC monolayers. The primary interactions of Acanthamoeba with the HBMEC resulted in increased protein tyrosine phosphorylations and the activation of RhoA, suggesting host–parasite cross-talk. Furthermore, Western blot assays revealed that Acanthamoeba degraded occludin and zonula occludens-1 proteins in a Rho kinase-dependent manner. Overall, these findings suggest that Acanthamoeba affects the integrity of the monolayer and traverses the HBMEC by targeting the tight junction proteins.  相似文献   

15.
Role of tight junctions in cell proliferation and cancer   总被引:3,自引:0,他引:3  
The acquisition of a cancerous phenotype by epithelial cells involves the disruption of intercellular adhesions. The reorganization of the E-cadherin/beta-catenin complex in adherens junctions during cell transformation is widely recognized. Instead the implication of tight junctions (TJs) in this process is starting to be unraveled. The aim of this article is to review the role of TJ proteins in cell proliferation and cancer.  相似文献   

16.
We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4alpha [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4alpha triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4alpha-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4alpha led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4alpha provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization.  相似文献   

17.
ZO-2 is a tight junction (TJ) protein that shuttles between the plasma membrane and the nucleus. ZO-2 contains several protein binding sites that allow it to function as a scaffold that clusters integral, adaptor and signaling proteins. To gain insight into the role of ZO-2 in epithelial cells, ZO-2 was silenced in MDCK cells with small interference RNA (siRNA). ZO-2 silencing triggered: (A) changes in the gate function of the TJ, determined by an increase in dextran flow through the paracellular route of mature monolayers and achievement of lower transepithelial electrical resistance values upon TJ de novo formation; (B) changes in the fence function of the TJ manifested by a non-polarized distribution of E-cadherin on the plasma membrane; (C) altered expression of TJ and adherens junction proteins, determined by a decreased amount of occludin and E-cadherin in mature monolayers and a delayed arrival to the plasma membrane of ZO-1, occludin and E-cadherin during a calcium switch assay; and (D) an atypical monolayer architecture characterized by the appearance of widened intercellular spaces, multistratification of regions in the culture and an altered pattern of actin at the cellular borders.  相似文献   

18.
19.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

20.
Summary This paper reports the effect of reversing the osmotic environment between luminal and serosal compartments of a toad urinary bladder on the polarity of assembly of tight junction strands. Toad bladders were filled with Ringer's solution (220 mOsm) and were immersed in distilled water at room temperature or at 37°C. Within two minutes, new tight junction strands are assembled. The new tight junctional strands unite the basal pole of epithelial cells with the apical side of basal cells. Physiological studies show that oxytocin, a synthetic analog of antidiuretic hormone, is still capable of inducing increases in water transport in epithelia which were osmotically reversed. This capacity decreases significantly for longer periods of osmotic reversal. Osmotic reversal does not alter the original polarity of epithelial cells: 1) the apical tight junction belt, at the apical pole, is not displaced; 2) the freeze-fracture morphology typical of apical plasma membrane (particle-rich E faces; particle-poor P faces) is not altered; 3) oxytocin and cyclic AMP induce aggregates which are observed only at the apical plasma membrane. Massive assembly of junctional elements occurs even in epithelia preincubated in the presence of cycloheximide (an inhibitor of protein synthesis) or of cytoskeleton perturbers. Our experiments show that the polarity of assembly of tight junction strands depends on the vectorial orientation of the osmotic environment of the epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号