首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both beta(2)- and beta(3)-adrenergic receptors (ARs) are able to activate the extracellular signal-regulated kinase (ERK) pathway. We previously showed that c-Src is required for ERK activation by beta(2)AR and that it is recruited to activated beta(2)AR through binding of the Src homology 3 (SH3) domain to proline-rich regions of the adapter protein beta-arrestin1. Despite the absence of sites for phosphorylation and beta-arrestin binding, ERK activation by beta(3)AR still requires c-Src. Agonist activation of beta(2)AR, but not beta(3)AR, led to redistribution of green fluorescent protein-tagged beta-arrestin to the plasma membrane. In beta-arrestin-deficient COS-7 cells, beta-agonist-dependent co-precipitation of c-Src with the beta(2)AR required exogenous beta-arrestin, but activated beta(3)AR co-precipitated c-Src in the absence or presence of beta-arrestin. ERK activation and Src co-precipitation with beta(3)AR also occurred in adipocytes in an agonist-dependent and pertussis toxin-sensitive manner. Protein interaction studies show that the beta(3)AR interacts directly with the SH3 domain of Src through proline-rich motifs (PXXP) in the third intracellular loop and the carboxyl terminus. ERK activation and Src co-precipitation were abolished in cells expressing point mutations in these PXXP motifs. Together, these data describe a novel mechanism of ERK activation by a G protein-coupled receptor in which the intracellular domains directly recruit c-Src.  相似文献   

2.
To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src.  相似文献   

3.
Role of c-Src in muscle differentiation has been controversial. Here, we investigated if c-Src positively or negatively regulates muscle differentiation, using H9c2 and C2C12 cell lines. Inhibition of c-Src by treatment with PP1 and SU6656, pharmacologic inhibitors of Src family kinases, or by expression of a dominant negative c-Src, all induced muscle differentiation in proliferation medium (PM). In differentiating cells in differentiation medium (DM), c-Src activity gradually decreased and reached basal level 3 days after induction of differentiation. Inhibition of c-Src suppressed Raf/MEK/ERK pathway but activated p38 MAPK. Inhibition of p38 MAPK did not affect c-Src activity in PM. However, it reactivated Raf/MEK/ERK pathway in c-Src-inhibited cells regardless of PM or DM. Concomitant inhibition of c-Src and p38 MAPK activities blocked muscle differentiation in both media. In conclusion, suppression of c-Src activity stimulates muscle differentiation by activating p38 MAPK uni-directionally.  相似文献   

4.
5.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

6.
GRK2 is a member of the G protein-coupled receptor kinase (GRK) family, which phosphorylates the activated form of a variety of G protein-coupled receptors (GPCR) and plays an important role in GPCR modulation. It has been recently reported that stimulation of the mitogen-activated protein kinase cascade by GPCRs involves tyrosine phosphorylation of docking proteins mediated by members of the Src tyrosine kinase family. In this report, we have investigated the possible role of c-Src in modulating GRK2 function. We demonstrate that c-Src can directly phosphorylate GRK2 on tyrosine residues, as shown by in vitro experiments with purified proteins. The phosphorylation reaction exhibits an apparent K(m) for GRK2 of 12 nM, thus suggesting a physiological relevance in living cells. Consistently, overexpression of the constitutively active c-Src Y527F mutant in COS-7 cells leads to tyrosine phosphorylation of co-expressed GRK2. In addition, GRK2 can be detected in phosphotyrosine immunoprecipitates from HEK-293 cells transiently transfected with this Src mutant. Interestingly, phosphotyrosine immunoblots reveal a rapid and transient increase in GRK2 phosphorylation upon agonist stimulation of beta(2)-adrenergic receptors co-transfected with GRK2 and wild type c-Src in COS-7 cells. This tyrosine phosphorylation is maximal within 5 min of isoproterenol stimulation and reaches values of approximately 5-fold over basal conditions. Furthermore, GRK2 phosphorylation on tyrosine residues promotes an increased kinase activity toward its substrates. Our results suggest that GRK2 phosphorylation by c-Src is inherent to GPCR activation and put forward a new mechanism for the regulation of GPCR signaling.  相似文献   

7.
17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.  相似文献   

8.
9.
Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.  相似文献   

10.
As activation of the Ras/Raf/MEK/ERK pathway is a critical component of M-CSF-promoted osteoclast survival, determining specific mechanism by which M-CSF activates this signal transduction pathway is paramount towards advancing treatment of pathological conditions resulting in increased bone turnover. The p21 activated kinase PAK1 modulates activation of the Raf/MEK/ERK pathway by either directly activating Raf or priming MEK for activation by Raf. Therefore a role for PAK1 in M-CSF-mediated activation of the MEK/ERK pathway controlling osteoclast survival was assessed. Here we show that PAK1 is activated by M-CSF in a Ras-dependent mechanism that promotes osteoclast survival. Surprisingly, PAK1 did not modulate Raf activation or Raf-mediated MEK activation. M-CSF mediated activation of Raf was required for PAK1 activation and osteoclast survival promoted by PAK1. This survival response was MEK-independent as expression of constitutively active MEK did not rescue osteoclasts from apoptosis induced by blocking PAK1 function. Functionally, PAK1 promoted osteoclast survival by modulating expression of the IAP family member Survivin. M-CSF therefore functions to promote PAK1 activation as a novel MEK-independent Raf target to control Survivin-mediated osteoclast survival.  相似文献   

11.
Vascular cell adhesion molecule (VCAM)-1 has been implicated in interactions between leukocytes and connective tissue, including rheumatoid arthritis (RA) synovial tissue fibroblasts. Such interactions within the synovium contribute to RA inflammation. Using phosphoinositide 3-kinase (PI3-kinase) inhibitor LY294002 and Src inhibitor PP2, we show that interleukin (IL)-18-induced ERK1/2 activation is Src kinase-dependent. Antisense (AS) c-Src oligonucleotide (ODN) treatment reduced IL-18-induced ERK1/2 expression by 32% compared with control, suggesting an upstream role of Src in ERK1/2 activation. AS c-Src ODN treatment also inhibited Akt expression by 74% compared with sense control. PI3-kinase inhibitor LY294002 or AS PI3-kinase ODN inhibited Akt expression. AS c-Src ODN inhibited Akt phosphorylation, confirming Src is upstream of PI3-kinase in IL-18-induced RA synovial fibroblast signaling. IL-18 induced a time-dependent activation of c-Src, Ras, and Raf-1, suggesting this signaling cascade plays a role in ERK activation. IL-18 directly activated Src kinase by more than 4-fold over basal levels by enzymatic assay. Electrophoretic mobility shift assay showed that activator protein-1 (AP-1) is activated by IL-18 through ERK and Src but not through PI3-kinase. In an alternate pathway, inhibition of IL-1 receptor-associated kinase-1 (IRAK) with AS ODN to IRAK reduced IL-18-induced expression of nuclear factor kappaB (NFkappaB). Finally, IL-18-induced cell surface VCAM-1 expression was inhibited by treatment with AS ODNs to c-Src, IRAK, PI3-kinase, and ERK1/2 by 57, 43, 41, and 32% compared with control sense ODN treatment, respectively. These data support a role for IL-18 activation of three distinct pathways during RA synovial fibroblast stimulation: two Src-dependent pathways and the IRAK/NFkappaB pathway. Targeting VCAM-1 signaling mechanisms may represent therapeutic approaches to inflammatory and angiogenic diseases characterized by adhesion molecule up-regulation.  相似文献   

12.
13.
14.
Most Src family members are diacylated and constitutively associate with membrane "lipid rafts" that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at "rafts" remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to "lipid rafts"; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 degrees C and floated into sucrose density gradients like caveolin-1 and flotillin-2, i.e. "lipid rafts". By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ( approximately 70%) cholesterol extraction with methyl-beta-cyclodextrin (MbetaCD) did not abolish "rafts" floatation, but strongly decreased Src association with floating "rafts" and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to MbetaCD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at "non-raft" domains on endosomes, then via PI3-kinase-Akt on a distinct set of "rafts" at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.  相似文献   

15.
The MAPKKs MEK1 and MEK2 are activated by phosphorylation, but little is known about how these enzymes are inactivated. Here, we show that MEK1 is phosphorylated in vivo at Ser(212), a residue conserved among all MAPKK family members. Mutation of Ser(212) to alanine enhanced the basal activity of MEK1, whereas the phosphomimetic aspartate mutation completely suppressed the activation of both wild-type MEK1 and the constitutively activated MEK1(S218D/S222D) mutant. Phosphorylation of Ser(212) did not interfere with activating phosphorylation of MEK1 at Ser(218)/Ser(222) or with binding to ERK2 substrate. Importantly, mimicking phosphorylation of the equivalent Ser(212) residue of the yeast MAPKKs Pbs2p and Ste7p similarly abrogated their biological function. Our findings suggest that Ser(212) phosphorylation represents an evolutionarily conserved mechanism involved in the negative regulation of MAPKKs.  相似文献   

16.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity.  相似文献   

17.
18.
Bcr-Abl is the constitutively active protein-tyrosine kinase expressed as a result of the Philadelphia translocation in chronic myelogenous leukemia. Bcr-Abl is coupled to many of the same signaling pathways normally regulated by hematopoietic cytokines. Recent work shows that Hck, a member of the Src tyrosine kinase family with myeloid-restricted expression, associates with and is activated by Bcr-Abl. Here we investigated the mechanism of Hck interaction with Bcr-Abl and the requirement for Hck activation in Bcr-Abl transformation signaling. Binding studies demonstrated that the Hck SH3 and SH2 domains are sufficient for interaction with Bcr-Abl in vitro. Hck binding localizes to the Abl SH2, SH3, and kinase domains as well as the distal portion of the C-terminal tail. To address the requirement for endogenous Src family kinase activation in Bcr-Abl signaling, a kinase-defective mutant of Hck was stably expressed in the cytokine-dependent myeloid leukemia cell line DAGM. Kinase-defective Hck dramatically suppressed Bcr-Abl-induced outgrowth of these cells in the absence of cytokine compared with a control cell line expressing beta-galactosidase. In contrast, kinase-defective Hck did not affect cell proliferation in response to interleukin-3, suggesting that the effect is specific for Bcr-Abl. These data show that Hck interacts with Bcr-Abl through a complex mechanism involving kinase-dependent and -independent components and that interaction with Hck or other Src family members is essential for transformation signaling by Bcr-Abl.  相似文献   

19.
Engagement of the T-cell antigen receptor (TCR) results in the proximal activation of the Src family tyrosine kinase Lck. The activation of Lck leads to the downstream activation of the Ras/Raf/MEK/ERK signaling pathway (where ERK is extracellular signal-related kinase). Under conditions of weak, but not strong, stimulation through the TCR, a version of Lck that contains a single point mutation in the SH3 (Src homology 3) domain (W97ALck) fails to support the activation of ERK, despite initiating signaling through the TCR, as demonstrated by the robust activation of ZAP-70, PLC-γ, and Ras. We determined that the signaling lesion in W97ALck-expressing cells lies at the level of Raf-1 activation and is dependent on the presence of tyrosines 340/341 in the Raf-1 sequence. These data demonstrate a second function for Lck in TCR-mediated signaling to ERK. Additionally, we found that a significant fraction of Lck is localized to the Golgi apparatus and that, compared with wild-type Lck, W97ALck displays aberrant Golgi membrane localization. Our results support a model where under conditions of weak stimulation through the TCR, in addition to activated Ras, Golgi apparatus-localized Lck is needed for the full activation of Raf-1.  相似文献   

20.
The gap junction protein, Cx43, plays a pivotal role in coupling cells electrically and metabolically, and the putative phosphorylation sites that modulate its function are reflected as changes in gap junction communication. Growth factor stimulation has been correlated with a decrease in gap junction communication and a parallel activation of ERK1/2; the inhibition of epidermal growth factor (EGF)-induced Cx43 gap junction uncoupling was observed by using the MEK1/2 inhibitor, PD98059. Because 1) BMK1/ERK5, another MAPK family member also activated by growth factors, possesses a phosphorylation motif similar to ERK1/2, and 2) it has been reported that PD98059 can inhibit not only MEK1/2-ERK1/2 but also MEK5-BMK1 activation, we investigated whether BMK1 can regulate EGF-induced Cx43 gap junction uncoupling and phosphorylation, comparing this to the role of ERK1/2 on Cx43 function and phosphorylation induced by EGF. Selective activation or inactivation of ERK1/2 by using a constitutively active form or a dominant negative form of MEK1 did not regulate Cx43 gap junction coupling. In contrast, we found that BMK1, selectively activated by constitutively active MEK5alpha, induced gap junction uncoupling, and the inhibition of BMK1 activation by transfection of dominant negative BMK1 prevented EGF-induced gap junction uncoupling. Activated BMK1 selectively phosphorylates Cx43 on Ser-255 in vitro and in vivo, but not on S279/S282, which are reported as the consensus phosphorylation sites for MAPK. Furthermore, by co-immunoprecipitation, we found that BMK1 directly associates with Cx43 in vivo. These data indicate that BMK1 is more important than ERK1/2 in EGF-mediated Cx43 gap junction uncoupling by association and Cx43 Ser- 255 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号