首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estradiol17beta (E2) and the phytoestrogens genistein (G), and daidzein (D) increase creatine kinase (CK) specific activity in primary cell cultures of human female to a greater extent in cells from pre-menopausal than post-menopausal women. Pretreatment with the non-calcemic analog of Vitamin D, JK 1624 F2-2 (JKF), upregulated this estrogenic response at all ages. In contrast, biochainin A (BA) and quercertin (Qu) increased CK with no age dependence or modulation by JKF pretreatment. Both ERalpha and ERbeta present in the cells were upregulated by pretreatment with JKF, as measured by Western blot analysis. Real time PCR showed no significant change in ERalpha mRNA but a marked decrease in ERbeta mRNA in both age groups after JKF treatment. Cells from both age groups had surface binding sites for E2, shown by assays using cell impermeable Europium labeled ovalbumin-E2 conjugate (Eu-Ov-E2). Binding of [3H]-E2 to intracellular E2 receptors (ERs) was similar in both age groups with differences in phytoestrogenic competition. JKF pretreatment increased nuclear but decreased membranal binding in both age groups. These results provide evidence for membranal, in addition to nuclear estrogen receptors which are differentially modulated by a Vitamin D analog.  相似文献   

2.
We have reported previously, that female-derived bone cells responded to 17beta-estradiol (E(2)) and raloxifene (Ral), and male-derived cells responded only to dihydrotestosterone (DHT) when the stimulation of creatine kinase specific activity (CK), which is a marker for hormone responsiveness, was measured. We also found that pre-treatment with the less-calcemic analog of Vitamin D, JK 1624 F(2)-2 (JKF), upregulated the response of CK to E(2) and Ral. In this study, we analyzed the response of human bone cells from pre- and post-menopausal females and males, to phytoestrogens. Bone cells derived from pre-menopausal women showed greater stimulation of CK than cells from post-menopausal women, after treatment with E(2) (30 nM), daidzein (D, 3000 nM), genistein (G, 3000 nM) and Ral (3000 nM); whereas the responses to biochainin A (BA 3000 nM), quecertin (Qu 3000 nM) or the carboxy derivative of G (cG 300 nM) were not age-dependent. Male-derived cells did not respond to phytoestrogens. When cells derived from female bones at both age groups were pre-treated with JKF, by daily addition of 1nM, for 3 days, there was an upregulation of the response to E(2), Ral, G and D but not to BA or Qu. Nuclear binding of (3)[H] E(2) was characteristic of the different phytoestrogens, with increase of the specific binding after pre-treatment with JKF. In contrast, the membranal binding of E(2)-Ov-Eu, which was specific for the estrogenic compounds except Ral, was inhibited by pre-treatment with JKF except for ICI 161480 (ICI). Male bone cells did not bind E(2)-Ov-Eu but bound T-BSA-Eu; this binding was abolished by pre-treatment with JKF. Pre-treatment with JKF increased mRNA for ERalpha and decreased mRNA for ERbeta in bone cells from both age groups of females and from males, all of which expressed both ERs, with a ratio of ERalpha to ERbeta of 121:1 in pre- and 78:1 in post-menopausal and 105:1 in male bone cells. This study raises the possibility of combined Vitamin D analog and phytoestrogen for hormonal replacement therapy to prevent post-menopausal osteoporosis, which is a subject of ongoing research in animal models.  相似文献   

3.
Cultured female-derived human bone cells (hObs) responded by different parameters to different phytoestrogenic and vitamin D compounds. Pre- and post-menopausal hObs express ERα and ERβ mRNA with higher abundance of ERα. Pre-treatment with the less-calcemic vitamin D analog JKF 1624F(2)-2 (JKF) upregulated responsiveness to estrogens via modulation of ERs expression. These estrogenic compounds induce the expression and activity of 25 hydroxy-vitamin D(3)-1α hydroxylase (1OHase). We now analyzed the effects of carboxy-genistein (cG), carboxy-biocainin A (cBA) and carboxy-daidzein (cD), of BA, D or G and of licorice derived compounds glabridin (Glb) and glabrene (Gla) and estradiol-17β (E(2)) on DNA synthesis, creatine kinase specific activity (CK), intracellular and membranal E(2) binding and their modulations by JKF in hObs. We also analyzed modulation by phytoestrogenic compounds of 1OHase mRNA expression and activity. We showed that: (1) all compounds stimulated DNA synthesis and CK. (2) JKF and all estrogenic compounds modulated ERα and ERβ mRNA expression. (3) Pre-treatment with JKF increased DNA synthesis and CK responses only to E(2), D, G and Gla. (4) JKF increased the intracellular competitive binding only of E(2), D and G. (5) JKF abolished the membranal binding of all protein-bound estrogens. (6) JKF and all estrogenic compounds except the protein-bound ones up-regulated 1OHase expression and activity. In conclusion phytoestrogens and their analogs increase DNA synthesis and CK, and lead to increased production of 1,25(OH)(2)D(3) in hObs, while pre-treatment with JKF modulates the effect of estrogenic compounds via regulation of ERs mRNA expression in a yet unclear mechanism.  相似文献   

4.
Estradiol-17beta (E(2)) increases creatine kinase (CK) specific activity in aorta (Ao) and left ventricle of the heart (Lv) from rat females. In the present study, we analyzed the effects of pretreatment with the non calcemic analog of vitamin D, JK 1624 F2-2 (JKF) on the response to E(2) (either 0.5 or 5 microg/rat) of Ao and Lv from prepubertal female rats. JKF did not affect CK in either organ. However, pretreatment with JKF (0.1 ng/g body weight for 1 or 2 weeks) increased the CK response to E(2) (0.5 microg/rat) by 50 +/- 10% in Ao and by 150 +/- 12% in Lv. The CK response to 5 microg/rat of E(2) in intact female rats, was increased by 118 +/- 15% and 99 +/- 11% in the Ao and by 89 +/- 6% and 112 +/- 13% in the Lv, in animals treated daily with JKF for 1 or 2 weeks, respectively, before administration of E(2). JKF also increased the response to 500 microg/rat raloxifene (Ral) by 47 +/- 8% in Ao and by 56 +/- 12% in Lv. Preliminary experiments showed that JKF treatment induced a approximately 50% increase in estradiol receptor ERalpha in both organs. The results indicate that the vitamin D analog JKF upregulates the response and sensitivity of vascular tissues to E(2), in association with increased expression of their ERalpha. These results should prompt examination of the possibility that the effects estrogen therapy in postmenopausal women can be augmented by vitamin D or its analogs.  相似文献   

5.
Pretreatment with 1 nM 1,25-dihydroxyvitamin D(3) (1,25), or non-hypercalcemic Vitamin D analogs, upregulated the response of creatine kinase (CK) to 17beta-estradiol (30 nM E(2)), raloxifene (3000 nM RAL) or dihydrotestosterone (300 nM DHT) in primary human bone cells. Previously, we reported that these osteoblast-like cells responded to gonadal steroids in a sex specific manner. Bone cells derived from pre-menopausal women showed greater stimulation of CK specific activity by E(2) than bone cells from post-menopausal women; in male-derived cells no age related difference was found. In this study, we treated cells derived from female or male bones, at different ages, with the side chain modified analogs of Vitamin D: CB 1093 (CB), EB 1089 (EB), MC 1288 (MC) and the demonstrably non-calcemic hybrid analog JK 1624 F2-2 (JKF), by daily addition of 1 nM, for 3 days. On day 4, cells were incubated with sex steroids for 4h and cell extracts were prepared. Pretreatment with JKF or CB significantly upregulated the response to 30 nM E(2) in all female-derived cells and to 300 nM DHT in mature male-derived cells. In cells from older males, only JKF caused augmentation of DHT action. Bone cells from pre- or post-menopausal females responded to 3000 nM RAL by increased CK activity to the same extent as to 30 nM E(2); however, RAL and E(2), when applied together, resulted in mutual annihilation of their agonist activities. Vitamin D analogs prevented the antagonistic effect of RAL in the presence of E(2), possibly due to increased numbers of ERs. Both estrogen receptors, alpha (ERalpha) and beta (ERbeta), were expressed in male- as well as in female-derived cells. However, only in female-derived cells were ERalpha and ERbeta upregulated by pretreatment with Vitamin D analogs. This study raises the possibility of testing combined Vitamin D analog and estrogen replacement treatment for post-menopausal women to prevent osteoporosis.  相似文献   

6.
Estradiol-17beta (E2) and some phytoestrogens induce a biphasic effect on DNA synthesis in cultured human vascular smooth muscle cells (VSMC), i.e., stimulation at low concentrations and inhibition at high concentrations. These compounds also increase the specific activity of creatine kinase (CK) as well as intracellular Ca2+ concentration in both VSMC and human female-derived cultured bone cells (OBs), and stimulate ERK1/2 phosphorylation in VSMC. At least some of these effects are exerted via membranal binding sites (mER), as would appear from observations that protein-bound, membrane impermeant estrogenic complexes can mimic the effect of E2 on DNA synthesis, intracellular Ca2+ concentration and MAPK, but not on CK activity. We now extend these studies by examining the effects of a novel carboxy-derivative of biochanin A, 6-carboxy-biochanin A (cBA) in VSMC and human osteoblasts in culture. cBA increased DNA synthesis in VSMC in a dose-dependent manner and was able to maintain this effect when linked to a cell membrane impermeable protein. In VSMC both cBA and estradiol, in their free or protein-bound forms induced a steep and immediate rise in intracellular calcium. Both the free and protein-bound conjugates of cBA and estradiol increased net MAPK-kinase activity. Neither the stimulatory effect of cBA nor the inhibitory effect of estradiol on DNA synthesis in VSMC could be shown in the presence of the MAPK-kinase inhibitor UO126. The presence of membrane binding sites for both estradiol and cBA was supported by direct visualization, using fluorescence labeling of their respective protein conjugates, E2-BSA and cBA-ovalbumin. Furthermore, these presumed membrane ER for estradiol and cBA were co-localized. In cultured human osteoblasts, cBA stimulated CK activity in a dose related fashion, which paralleled the increase in CK induced by estradiol per se, confirming the estrogenic properties of cBA in human bone cells. Both the free and protein-bound forms of cBA elicited immediate and substantial increments in intracellular Ca2+, similar to, but usually larger than the responses elicited by estradiol per se. cBA also increased ERalpha and suppressed ERbeta mRNA expression in human osteoblasts. Cultured human osteoblasts also harbor membrane binding sites for protein-bound form of cG, which are co-localized with the binding sites for protein-bound estradiol. The extent to which these properties of the novel synthetic phytoestrogen derivatives may be utilized to avert human vascular and/or bone disease requires further study.  相似文献   

7.
Vitamin D receptors are widely expressed in the cardiovascular system, in which Vitamin D and its metabolites exert a variety of biological activities such as regulation of cellular proliferation and differentiation, cell calcium transients and cell energy metabolism in vitro. The latter is mediated through the control of the brain type creatine kinase specific activity (CK), which serves to provide a readily available reservoir for ATP generation under increased work-load. In the present study we undertook to assess the role of Vitamin D on energy metabolism in the rat heart and aorta in vivo by using CK, which is a key energy metabolizing enzyme and compare Vitamin D depleted and repleted animals. Vascular tissues from female or male Vitamin D-depleted rats showed 61-80% lower CK activity in the aorta (Ao) and left ventricle of the heart (Lv) than control, Vitamin D-replete rats. Moreover, neither estradiol-17beta (E2) nor dihydrotestosterone (DHT), which increases CK specific activity in Ao and Lv of intact female or male rats, respectively, were able to stimulate CK in Vitamin D-depleted rats. Treatment of intact female rats for 2 weeks or 2 months with the less-calcemic Vitamin D analogs JKF 1624F2-2 (JKF) or QW 1624F2-2 (QW) (Fig. 1), did not significantly affect CK specific activity. However, after pretreatment with these analogs, there was an up regulation of the E2-induced CK response in Ao and Lv. In intact female rats, all Vitamin D analogs also potentiated the in vivo CK response to the SERMs raloxifene (Ral) and tamoxifen (TAM) in Ao and Lv. However the inhibitory effect of Ral or TAM on E2-induced CK activity was lost after pretreatment with Vitamin D analogs. The non-calcemic analog CB 1093 (CB) induced a significant increase in estradiol receptor alpha (ERalpha) protein in both myocardial and aortic tissue from intact and from ovariectomized female rats. Collectively, these results indicate that Vitamin D analogs modulate cell energy homeostasis in vascular tissues through induction of CK and up regulation of the response and sensitivity of CK in vascular tissues to E2 and to SERMs, possibly through via an increase in ERalpha protein in female derived organs. These results corroborate our previous in vitro studies in human vascular cells and further suggest that the Vitamin D system plays an important physiological role in maintaining normal cell energy reservoir in the vasculature.  相似文献   

8.
Vitamin D metabolites and its less-calcemic analogs (vitamin D compounds) are beneficial for bone and modulate cell growth and energy metabolism. We now analyze whether 25(OH)D(3) (25D), 1,25(OH)(2)D(3) (1,25D), 24,25(OH)(2)D(3) (24,25D), JKF1624F(2)-2 (JKF) or QW1624F(2)-2 (QW) regulate lipooxygenase (LO) mRNA expression and its products; hydroxyl-eicosatetraenoic acid (12 and 15HETE) formation, as well as reactive oxygen species (ROS) production in human bone cell line (SaOS2) and their interplay with modulation of cell proliferation and energy metabolism. All compounds except 25D increased 12LO mRNA expression and modulated 12 and 15HETE production whereas ROS production was increased by all compounds, and inhibited by NADPH oxidase inhibitors diphenyleneiodonium (DPI) and N-acetylcysteine (NAc). Baicaleine (baic) the inhibitor of 12 and 15LO activity blocked only slightly the stimulation of DNA synthesis by all compounds, whereas DPI inhibited almost completely the stimulation of DNA and CK by all compounds. Treatments of cells with 12 or 15HETE increased DNA synthesis and CK that were only slightly inhibited by DPI. These results indicate that vitamin D compounds increased oxidative stress in osteoblasts in part via induction of LO expression and activity. The increased ROS production mediates partially elevated cell proliferation and energy metabolism, whereas the LO mediation is not essential. This new feature of vitamin D compounds is mediated by intracellular and/or membranal binding sites and its potential hazard could lead to damage due to increased lipid oxidation, although the transient mediation of ROS in cell proliferation is beneficial to bone growth in a yet unknown mechanism.  相似文献   

9.
Adult ovariectomized rats were implanted with [D-Met2, Pro5]-enkephalinamide (ENK)-containing osmotic minipumps. Two hours prior to sacrifice, some animals were treated with estradiol-17beta (E2) at a dose 10 microg/100 g bodyweight (BW). Expression and activation of Akt proteins, nuclear [3H]estradiol binding, and the expression of estrogen receptor alpha (ERalpha) and beta (ERbeta) and of progesterone receptor (PR) were investigated. Estradiol increased the level of activated Akt protein (pAkt473) in the hypothalamus by 52 +/- 11% in comparison to the vehicle-treated controls. No such effect of E2 was observed 24 and 48 h after ENK implantation. This effect of ENK was abolished by concomitant treatment with naloxone. Time-dependent changes in nuclear [3H]estradiol binding and the expression of estrogen and progesterone receptors were also detected in the hypothalamus of ENK-implanted and E2-treated rats. At 24-48 h following ENK implantation, expression of ERalpha and high affinity [3H]estradiol binding decreased. At this time point, the PR level was also reduced, while the ERbeta level was augmented. In conclusion, these results suggest that the stimulatory effects of E2 on the expression and activation of Akt protein and the expression of ERalpha and PR are negatively regulated in rat hypothalamus exposed to chronic ENK treatment.  相似文献   

10.
11.
We investigated the effects of the estrogen receptor-alpha (ERalpha) and -beta (ERbeta) in the regulation of leptin, resistin, and adiponectin expression in 3T3-L1 adipocytes. Mature adipocytes were exposed to estradiol (E2), ERalpha agonist (PPT (4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol)), ERbeta agonist (DPN (2,3-bis(4-Hydroxyphenyl)-propionitrile)), E2 with ERalpha antagonist (MPP (1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride)), and E2 with ERbeta antagonist (R,R-THC ((R,R)-5,11-diethyl-5,6,11,12-tetrahydro-2,8-chrysenediol)) at different concentrations. To clarify the expression and regulation of adipokines by ER subtypes, total RNA was extracted from cells and measured using quantitative PCR. Western blot analysis was performed to evaluate the protein expression of adipokines, ERalpha, and ERbeta. The leptin expression was significantly increased in the cells treated with high concentrations (10(-5) and 10(-6) mol/l) of the PPT (P < 0.01, P < 0.05). By contrast, the leptin expression decreased in a dose-dependent manner in the MPP-treated groups (P < 0.05). High concentrations (10(-5) mol/l) of R,R-THC with E2 (10(-7) mol/l) caused a significant increase of the leptin expression (P < 0.01). The leptin mRNA levels were positively correlated with the ERalpha mRNA levels (r = 0.584, P < 0.01) and negatively correlated with the ERbeta mRNA levels (r = -0.236, P = 0.03) in the adipocytes. The ratio of the ERalpha to ERbeta mRNA levels in the adipocytes was significantly associated with leptin mRNA levels (r = 0.454, P < 0.01). ERalpha induced leptin expression and ERbeta inhibited its expression in 3T3-L1 adipocytes. The ratio of the ERalpha-to-ERbeta expression in 3T3-L1 adipocytes may be an important potential regulatory factor in leptin expression.  相似文献   

12.
13.
We have reported that multiple treatments with so-called 'non-hypercalcemic' analogs of 1 alpha,25(OH)(2) vitamin D(3) (1,25(OH)(2)D(3)) stimulate the specific activity of creatine kinase BB (CK) in ROS 17/2.8 osteoblast-like cells, and that pretreatment with these analogs upregulates responsiveness and sensitivity to 17 beta estradiol (E(2)) for the induction of CK. However, since the analogs showed toxicity in vivo, we have now studied the action of a demonstrably non-calcemic hybrid analog of vitamin D in ROS 17/2.8 cells, and prepubertal rats. The analog JKF was designed to separate its calcemic activity from other biological activities by combining a calcemic-lowering 1-hydroxymethyl group with a potentiating C, D-ring side chain modification including 24 difluoronation. Treatment with 1 pM JKF alone significantly stimulated CK specific activity at 4 h by 30+/-10%. However after three daily pretreatments, JKF upregulated the extent of induction by 30 nM E(2) by 33% at 1 pM and by 97% at 1 nM; the E(2) dose needed for a significant stimulation of CK activity was lowered to 30 pM. The action of the SERMS tamoxifen, tamoxifen methiodide and raloxifene, at 3 microM, was also upregulated by three daily pretreatments with 1 nM JKF; unexpectedly, this pretreatment prevented the inhibition of E(2) stimulation by the SERMS. Upregulation of E(2) action by 1 nM JKF was inhibited by 1 nM ZK159222, an inhibitor of the nuclear action of 1,25(OH)(2)D(3). In vivo, three daily injections of 0.05 ng/g body weight of JKF augmented the response of prepubertal female rat diaphysis and epiphysis to E(2). Therefore, demonstrably non-calcemic analogs of 1,25(OH)(2)D(3) may have potential for use in combination with estrogens or SERMS in the prevention and/or treatment of metabolic bone diseases such as postmenopausal osteoporosis.  相似文献   

14.
In an earlier study, we showed that estradiol (E2) inhibits proliferation and transformation in cultured rat hepatic stellate cells (HSCs) and that the actions of E2 are mediated through estrogen receptors (ERs). This study reports on an investigation of the cellular localization of ER subtypes ERalpha and ERbeta using immunohistochemistry in experimental fibrotic liver rats and of each ER subtype expression in cultured rat HSCs by evaluating the produced mRNA and protein. The results indicate that high levels of ERbeta expression and low or no levels of ERalpha expression were observed in normal and fibrotic livers and in quiescent and activated HSCs from both males and females. The specificity of E2-mediated antiapoptotic induction through the ERbeta was shown by dose-dependent inhibition by the pure ER antagonist ICI 182,780 in HSCs which were undergoing early apoptosis. These findings demonstrate for the first time that rat HSCs possess functional Erbeta, but not Eralpha, to respond directly to E2 exposure.  相似文献   

15.
Kang B  Jiang DM  Liu B  Zhou RJ  Zhen L  Yang HM 《Folia biologica》2011,59(3-4):135-140
The profile of ERalpha and ERbeta gene expression in the ovaries of Zi geese at 1 day and 1,2, 3, 4, 5 and 8 months of age (n=8, respectively) was examined by quantitative real-time PCR (qRT-PCR). The results showed that the expression of ERalpha and ERbeta mRNA was greater at 1 to 5 and 8 months compared with that observed at 1 day. In particular, the level of expression of ERalpha and ERbeta at 8 months was greater, 2.47 +/- 0.23 fold and 29.07 +/- 1.25 fold, respectively, compared with that at 1 day (P<0.05). The expression of ERalpha mRNA was not significantly different at 1, 2, 3 and 4 months (P>0.05). The level of expression of ERalpha mRNA at 5 months was 1.86 +/- 0.17 fold higher than at 1 day (P<0.05). The level of expression of ERbeta mRNA at 2, 3, 4, 5 and 8 months (1.96 +/- 0.13, 2.58 +/- 0.08, 2.08 +/- 0.05, 3.25 +/- 0.11 and 29.07 +/- 1.25 fold, respectively, P<0.05) was significantly higher than at 1 day. In summary, the expression of ERalpha and ERbeta mRNA in the ovaries of geese was increased between newborn and the laying stage. These results suggest that ERalpha and ERbeta mediate the process of ovarian development and egg laying in geese. In addition, ERbeta may play a more important role in regulating the response of the ovary to estrogen during the developmental and egg-laying stages.  相似文献   

16.
Sex steroid hormone receptors play a central role in modulating telomerase activity, especially in cancer cells. However, information on the regulation of steroid hormone receptors and their distinct functions on telomerase activity within the mesenchymal stem cell are largely unavailable due to low telomerase activity in the cell. In this study, the effects of estrogen (E2) treatment and function of estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) on telomerase activity were investigated in human mesenchymal stem cells (hMSCs). Telomerase activity and mRNA expression of the catalytic subunit of telomerase (hTERT) were upregulated by treatment of the cells with E2. The protein concentration of ERalpha was also increased by E2 treatment, and enhancement of ERalpha accumulation in the nucleus was clearly detected with immunocytochemistry. When ERalpha expression was reduced by siRNA transfection into hMSCs, the effect of E2 on the induction of hTERT expression and telomerase activity was diminished. In contrast, the transient overexpression of ERalpha increased the effect of E2 on the expression of hTERT mRNA. These findings indicate that the activation of hTERT expression and telomerase activity by E2 in hMSCs depends on ERalpha, but not on ERbeta.  相似文献   

17.
This study investigates the importance of the intracellular ratio of the two estrogen receptors ERalpha and ERbeta for the ultimate potential of the phytoestrogens genistein and quercetin to stimulate or inhibit cancer cell proliferation. This is of importance because (i) ERbeta has been postulated to play a role in modulating ERalpha-mediated cell proliferation, (ii) genistein and quercetin may be agonists for both receptor types and (iii) the ratio of ERalpha to ERbeta is known to vary between tissues. Using human osteosarcoma (U2OS) ERalpha or ERbeta reporter cells it was shown that compared to estradiol (E2), genistein and quercetin have not only a relatively greater preference for ERbeta but also a higher maximal potential for activating ERbeta-mediated gene expression. Using the human T47D breast cancer cell line with tetracycline-dependent ERbeta expression (T47D-ERbeta), the effect of a varying intracellular ERalpha/ERbeta ratio on E2- or pythoestrogen-induced cell proliferation was characterised. E2-induced proliferation of cells in which ERbeta expression was inhibited was similar to that of the T47D wild type cells, whereas this E2-induced cell proliferation was no longer observed when ERbeta expression was increased. With increased expression of ERbeta the phytoestrogen-induced cell proliferation was also reduced. These results point at the importance of the cellular ERalpha/ERbeta ratio for the ultimate effect of (phyto)estrogens on cell proliferation.  相似文献   

18.
19.
Estrogen receptors (ER) alpha and beta bind estradiol (E2) and other estrogenic ligands with different affinities. To measure the rate of E2 association with ERa and ERbeta, we employed tetrahydrocrysene ketone (THCK), a fluorescent ligand that is an agonist with ERalpha and an antagonist with ERbeta. We report that THCK binds E2-liganded and unliganded ERalpha and ERbeta, indicating a THCK binding site(s) other than the E2 binding pocket. THCK fluorescence was greater for ligand-occupied ERbeta than ERalpha, suggesting differences in the microenvironment of the THCK binding site(s). THCK fluorescence was also significantly greater for E2-, 4-hydroxytamoxifen-, and tamoxifen aziridine-liganded versus unliganded ER, allowing calculations of E2 association rate constants (ka) of 7.60 +/- 0.75 and 5.12 +/- 0.30 x 10(5) M(-1) s(-1) for E2-ERalpha and E2-ERbeta, respectively. THCK did not affect ERalpha binding to estrogen response element (ERE) DNA, but decreased ERbeta-ERE binding. We conclude that THCK binding site(s) on ERalpha versus ERbeta are different and important for ER function.  相似文献   

20.
Estradiol (E(2)) acts as a potent feedback molecule between the ovary and hypothalamic GnRH neurons, and exerts both positive and negative regulatory actions on GnRH synthesis and secretion. However, the extent to which these actions are mediated by estrogen receptors (ERs) expressed in GnRH neurons has been controversial. In this study, Single-cell RT-PCR revealed the expression of both ERalpha and ERbeta isoforms in cultured fetal and adult rat hypothalamic GnRH neurons. Both ERalpha and ERbeta or individual ERs were expressed in 94% of cultured fetal GnRH neurons. In adult female rats at diestrus, 68% of GnRH neurons expressed ERs, followed by 54% in estrus and 19% in proestrus. Expression of individual ERs was found in 24% of adult male GnRH neurons. ERalpha exerted marked G(i)-mediated inhibitory effects on spontaneous action potential (AP) firing, cAMP production, and pulsatile GnRH secretion, indicating its capacity for negative regulation of GnRH neuronal function. In contrast, increased E(2) concentration and ERbeta agonists increase the rate of AP firing, GnRH secretion, and cAMP production, consistent with ERbeta-dependent positive regulation of GnRH secretion. Consonant with the coupling of ERalpha to pertussis toxin-sensitive G(i/o) proteins, E(2) also activates G protein-activated inwardly rectifying potassium channels, decreasing membrane excitability and slowing the firing of spontaneous APs in hypothalamic GnRH neurons. These findings demonstrate that the dual actions of E(2) on GnRH neuronal membrane excitability, cAMP production, and GnRH secretion are mediated by the dose-dependent activation of ERalpha and ERbeta expressed in hypothalamic GnRH neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号