首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
实验考试2 生物化学 100分,90min。 介绍: 在酸性条件下,酸性磷酸酶使磷酸化的分子释放磷酸离子。本实验的目的是测定酸性磷酸酶的比活力(性)。任务1,测定土豆粗提物中酸性磷酸酶的活力。任务2,测定任务1粗提物中的蛋白浓度。结合任务1和任务2.可获得酸性磷酸酶的比活力(性),它的活力用每单位时间每单位蛋白量表示。比活力(性)是蛋白纯度的指标,它的值随蛋白纯度的提高而升高。  相似文献   

2.
大肠杆菌植酸酶基因appA的克隆与高效表达   总被引:8,自引:0,他引:8  
从猪粪便中分离并筛选出高效生产酸性植酸酶和磷酸酶双功酶(appA植酸酶)的大肠杆菌菌株。通过PCR方法从该菌株基因组中扩增获得了植酸酶基因appA,测序结果显示该基因编码区全长1,299个核苷酸。将该基因克隆到原核表达载体pET-28a( )上,通过转化的大肠杆菌BL21在试管摇床培养条件下得到了高效表达,其表达量达到692U/mL。酶学特性分析表明其反应的最适pH为4.5,最适温度为60℃。  相似文献   

3.
小麦珠心细胞衰退过程细胞化学研究Ⅱ.酸性磷酸酶超微结构定位田国伟,申家恒(哈尔滨师范大学生物系,哈尔滨150080)采用修改的Gomori法对小麦(Triticumaestivum)珠心细胞衰退过程中的酸性磷酸酶(AcP酶)作了超微细胞化学定位研究。...  相似文献   

4.
从猪粪便中分离并筛选出高效生产酸性植酸酶和磷酸酶双功酶(appA植酸酶)的大肠杆菌菌株。通过PCR方法从该菌株基因组中扩增获得了植酸酶基因appA,测序结果显示该基因编码区全长1,299个核苷酸。将该基因克隆到原核表达载体pET-28a(+)上,通过转化的大肠杆菌BL21在试管摇床培养条件下得到了高效表达,其表达量达到692U/mL。酶学特性分析表明其反应的最适pH为4.5,最适温度为60℃。  相似文献   

5.
从三个方面综述了植酸酶的研究进展:(1)植酸酶的种类及来源;(2)植酸酶的性质;(3)植酸酶基因及基因工程。  相似文献   

6.
RCS大鼠和Wistar大鼠视网膜酸性磷酸酶活性的动态观察   总被引:3,自引:0,他引:3  
本实验观察了不同年龄组RCS大鼠和Wistar大鼠视网膜中酸性磷酸酶的动态变化及其与RPE细胞消化功能的关系。运用偶氮偶联法显示12d、21d、2m的RCS大鼠和7d、2m的Wistar大鼠视网膜中的酸性磷酸酶;通过图像分析仪测定RPE细胞层和光感受器外节部分的酸性磷酸酶含量,并进行统计学分析。结果:酸性磷酸酶阳性反应呈暗红色,主要位于RPE细胞层,视网膜外核层、内核层,节细胞层亦有少量阳性反应颗粒。2m的RCS大鼠视细胞内、外节的酸性磷酸酶含量则明显高于其它组(P<0.01),其余结构的酸性酶各组间无显著性差异(P>0.05)。结论:RCS大鼠和Wistar大鼠的视网膜色素上皮细胞可能具有相同的消化功能。  相似文献   

7.
采用磷酸铅盐沉淀技术对小麦( Triticum aestivum L.) 珠心细胞衰退过程进行了酸性磷酸酶的超微细胞化学定位研究。结果显示,在未有明显衰退迹象的一些珠心细胞中,酸性磷酸酶只出现在细胞核轻微凝聚的染色质上。随珠心细胞衰退程度的逐渐增大,其衰退特征越来越明显,酸性磷酸酶依次在细胞质中较小液泡、细胞壁、线粒体、质体以及内质网等结构上出现活性反应。紧连胚囊的珠心细胞衰退程度最大,细胞严重变形,酸性磷酸酶定位于细胞绝大部分结构中,但此时变形的细胞核则无酸性磷酸酶活性反应。研究结果表明,小麦珠心细胞的衰退过程中,酸性磷酸酶存在一个有规律的变化,支持珠心细胞的衰退是属于细胞程序性死亡类型的观点  相似文献   

8.
小麦受精过程中酸性磷酸酶的超微细胞化学定位   总被引:6,自引:0,他引:6  
小麦(Triticum aestivum )受精前成熟胚囊,除胚囊中央细胞的合点端细胞质中有酸性磷酸酶外,其余部位均未发现酸性磷酸酶。受精时期,以下部位存在酸性磷酸酶活性:卵细胞的细胞核内一部分染色质和细胞质中大部分线粒体;精、卵核融合时两核的核周腔内;退化助细胞合点端细胞质和一些液泡内;进入雌性细胞中的两个精核;胚囊各成员细胞的细胞壁及胚囊周围珠心细胞的细胞壁。二细胞原胚中未见有酸性磷酸酶。早期胚乳游离核染色质上有酸性磷酸酶。小麦受精过程酸性磷酸酶的分布特点可能与卵细胞生理状态的变化和细胞质中线粒体的改组、助细胞的退化、精核的生理状态以及精核与卵核的核膜融合等有关。  相似文献   

9.
我们观察了青春型双歧杆菌微生态制品DM8504,对小鼠腹腔巨噬细胞酸性磷酸酶的影响。以青春型双歧杆菌DM8504,0.2ml(含活菌18×109)。注入小鼠腹腔。每天1次连续5次,对小鼠腹腔巨噬细胞酸性磷酸酶变化进行连续定量测定,并于终止注射后第3天取腹腔巨噬细胞涂片,以酶染色方法进行半定量观察。结果表明,于注射开始后第2天直至注射停止后第5夫,实验组小鼠腹腔巨噬细胞酸性磷酸酶含量均高于对照组,说明DM8504可激活小鼠巨噬细胞,提高酸性磷酸酶的含量及这种作用可维持的天数。  相似文献   

10.
酵母酸性磷酸酶基因表达的分子机制敖世洲(中国科学院上海生物化学研究所分子生物学国家重点实验室,上海200031)酵母酸性磷酸酶PHO5基因是一种阻遏型基因,它的表达受高浓度无机磷的阻遏,在低浓度无机磷条件下去阻遏[1]。PHO5基因的转录至少受5种蛋...  相似文献   

11.
Summary The hydrolysis of phosphate from phytic acid by the acid soil phytase system was reduced in the presence of metal ions. Copper was most effective in this respect — zinc and cadmium were less inhibitory. Binding to metals did not completely inhibit the hydrolysis of phytic acid. At higher metal concentrations, where binding to other soil constituents, like humic acids, interfered less, the inhibition of the phytase activity was stronger than that of acid phosphatase.  相似文献   

12.
植酸酶是催化植酸及植酸盐水解成肌醇和无机磷酸的一类酶的总称。植酸酶作为一种新型酶制剂,添加于食品和饲料中,能消除植酸引起的抗营养作用,提高蛋白质的生物利用率。本文综述有关植酸酶的分子结构、作用机理、生物学特征、基因结构的研究。  相似文献   

13.
L Barrientos  J J Scott    P P Murthy 《Plant physiology》1994,106(4):1489-1495
Phytases are the primary enzymes responsible for the hydrolysis of phytic acid, myo-inositol-1,2,3,4,5,6-hexakisphosphate (I-1,2,3,4,5,6-P6). A number of phytases with varying specificities, properties, and localizations hydrolyze phytic acid present in cells. The specificity of hydrolysis of phytic acid by alkaline phytase from lily (Lilium longiflorum L.) pollen is described. Structures of the intermediate inositol phosphates and the final product were established by a variety of nuclear magnetic resonance techniques (1H-, 31P-, and 31P-1H-detected multiple quantum coherence spectroscopy, and total correlation spectroscopy). On the basis of the structures identified we have proposed a scheme of hydrolysis of phytic acid. Initial hydrolysis of the phosphate ester occurs at the D-5 position of phytic acid to yield the symmetrical I-1,2,3,4,6-P5. The two subsequent dephosphorylations occur adjacent to the D-5 hydroxyl group to yield I-1,2,3-P3 as the final product. Alkaline phytase differs from other phytases in the specificity of hydrolysis of phosphate esters on the inositol ring, its high substrate specificity for phytic acid, and biochemical properties such as susceptibility to activation by calcium and inhibition by fluoride. The physiological significance of alkaline phytase and the biological role of I-1,2,3-P3 remain to be identified.  相似文献   

14.
Phytase (EC 3.1.3.26) and phytic acid (myo-inositol hexaphosphate) play an important environmental role in poultry industry and have a health aspect in food industry. Novel biosensors have been developed for simple, one step quantitative phytic acid and phytase detection. A system based on the sequentially acting enzyme phytase and pyruvate oxidase (POD) was employed for the development of phytase and phytic acid biosensors. Poly(carbamoylsulphonate) (PCS) hydrogel immobilized POD electrode was applied for the detection of phytase. It was based on the indication of phosphate ions produced by the hydrolysis of phytic acid. The phytase biosensor showed a linear response ranging from 0.5 to 6.0 units/ml. A bi-enzyme sensor based on co-immobilization of phytase and POD was developed for the detection of phytic acid on the basis of amperometric detection of the enzymatically-generated hydrogen peroxide at 0.6 V versus Ag/AgCl. It showed a linear response ranging from 0.2 to 2.0 mM with a detection limit of 0.002 mM.  相似文献   

15.
Mehta BD  Jog SP  Johnson SC  Murthy PP 《Phytochemistry》2006,67(17):1874-1886
Phytic acid is the most abundant inositol phosphate in cells; it constitutes 1-5% of the dry weight of cereal grains and legumes. Phytases are the primary enzymes responsible for the hydrolysis of phytic acid and thus play important roles in inositol phosphate metabolism. A novel alkaline phytase in lily pollen (LlALP) was recently purified in our laboratory. In this paper, we describe the cloning and characterization of LlALP cDNA from lily pollen. Two isoforms of alkaline phytase cDNAs, LlAlp1 and LlAlp2, which are 1467 and 1533 bp long and encode proteins of 487 and 511 amino acids, respectively, were identified. The deduced amino acid sequences contains the signature heptapeptide of histidine phosphatases, -RHGXRXP-, but shares < 25% identity to fungal histidine acid phytases. Phylogenetic analysis reveals that LlALP is most closely related to multiple inositol polyphosphate phosphatase (MINPP) from humans (25%) and rats (23%). mRNA corresponding to LlAlp1 and LlAlp2 were expressed in leaves, stem, petals and pollen grains. The expression profiles of LlAlp isoforms in anthers indicated that mRNA corresponding to both isoforms were present at all stages of flower development. The expression of LlAlp2 cDNA in Escherichia coli revealed the accumulation of the active enzyme in inclusion bodies and confirmed that the cDNA encodes an alkaline phytase. In summary, plant alkaline phytase is a member of the histidine phosphatase family that includes MINPP and exhibits properties distinct from bacterial and fungal phytases.  相似文献   

16.
转基因植物表达植酸酶研究进展   总被引:6,自引:0,他引:6  
植酸是植物体内磷的主要存在形式,其绝大部分不能被单胃动物消化吸收,而随粪便排出体外造成环境污染;同时,植酸又是一种抗营养因子,它通过络合植物体内的一些营养成分而降低植物的营养价值。通过植物转基因方法使植物自身表达足量的植酸酶,以减小植酸带来的不利影响,是提高植物性饲料营养价值和控制环境磷污染的一种经济有效的措施。就转基因植物植酸酶的优势、研究现状、存在的问题及其发展前景进行了综述。  相似文献   

17.
The ability of eight strains of Aspergillus niger to produce citric acid by the solid surface method were found to correlate with their capabilities to synthesize intracellular enzymes which degrade phytates (phytase and acid phosphatase). Another high correlation was observed between phytase and acid phosphatase activities bound to the cell walls of mycelia.  相似文献   

18.
Escherichia coli phytase is a phosphatase that catalyzes the hydrolysis of phytic acid into inorganic phosphate and myo-inositol. Two crystal forms of this enzyme were obtained in the presence of heavy metals. Crystal forms I and II were obtained with the heavy atoms CdCl(2) and HgCl(2) and diffracted to 1.5 A and 2.25 A resolution, respectively. Hg(2+) and Cd(2+) both acted as molecular bridge(s), linking and stabilizing E. coli phytase in the unit cell, and played a crucial role in the crystallization of phytase by bridging neighbouring symmetry related molecules.  相似文献   

19.
Changes in the levels of various phosphorus fractions and ofphytase activity in the cotyledons of young pea seedlings grownin the light have been studied. It is shown that from the onsetof germination there is a lag of several days in the hydrolysisof phytic acid and that this is associated with a low levelof phytase activity in cotyledon extracts. Rapid developmentof phytase during the next few days is accompanied by a rapidincrease in the rate of phytic acid break-down and both reachmaximum levels after 6–7 days from soaking the seed. Theamount of phytic acid in the cotyledons becomes negligible afterabout 15 days and at the same time phytase activity declinesmarkedly. At this point protease activity is at a maximum andthe water content of the cotyledons begins to fall. Removal of the shoot 4 days after soaking the seed caused animmediate decrease in export of phosphorus from the cotyledonsbut did not affect the level of phytic acid for several days.Subsequently there was a small, but significant reduction inthe rate of phytic acid hydrolysis in de-shooted seedlings ascompared with intact plants in spite of the fact that phytaseactivity was not affected for several days. Similar effectswere observed when excised cotyledons were cultured on moistfilter-paper. Control mechanisms for phytic acid hydrolysis are discussedand it is concluded that regulation by the axis of the inorganicphosphate concentration at the sites of phytase activity maybe a means of controlling phytic acid hydrolysis.  相似文献   

20.
The use of canola meal, an abundant side-product of canola oil processing in Canada, as animal feed is hampered by high phytic acid levels that reduce metal cation availability. Aspergillus carbonarius grows well in a solid canola meal medium, produces phytase and reduces the phytic acid content to zero. Inorganic phosphate addition at a concentration of 1 mg and 5 mg/110 g solid-state culture system results in better growth of the microorganism, higher rates and levels of phytase production, and faster reduction of phytic acid content. Phosphate concentrations of 50mg and 100 mg/110 g inoculated system had a negative effect affecting primarily the initial rates of biomass and phytase production and phytic acid content reduction. Models that predict biomass production (expressed as glucosamine content) and phytase, as well as the reduction of phytic acid content in the solid-state cultures supplemented with phosphate are reported. They fit the experimental results reasonably well (with a maximum deviation of 7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号