首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
1. Traps for litterfall and for lateral transport of organic matter were sampled over a 1-year period along longitudinal and lateral transects in a glacial stream system (Val Roseg, Swiss Alps), which is characterized by single-thread reaches and a large subalpine floodplain.
2. Allochthonous inputs to the glacier stream were low close to the glacier terminus but increased as woody riparian vegetation and forests develop. Annual inputs varied from 0.4 g ash free dry matter (AFDM) m–2 year–1 (direct input) and 0.7 g AFDM m–2 year–1 (lateral input) in the proglacial area to 23.0 g AFDM m–2 year–1 (direct input) and 10.7 g AFDM m–2 year–1 (lateral input) in the lowest reach with adjacent subalpine forests.
3. Direct inputs of organic matter decreased exponentially from forests at the floodplain edge to the floodplain centre, while lateral inputs of organic matter correlated linearly with distance to trees. Direct litterfall dominated litter input close to the forest, while lateral transport was the major pathway for channels more than 20 m away from the forest.
4. A conceptual framework is developed illustrating the influence of terrestrial vegetation and fluvial morphology on organic matter input along the continuum of glacial streams.  相似文献   

2.
Ongoing glacial retreat is expected to lead to numerous changes in glacier‐fed rivers. This study documents the development of community composition of the hitherto widely neglected micro‐ and meiobenthos (MMB: bacteria, fungi, algae, protists, and meiofauna) in glacier rivers in response to the distinct habitat conditions driven by different stages of (de)glacierization. Our model is based on the glacier catchments of the Möll River (MC) and Kleinelendbach stream (KC), in the Austrian Alps, with 60% and 25% glacierization and glacier retreats of 403 and 26 m, respectively, since 1998. Analyses of overall catchment diversity and resemblance patterns showed that neither intense glacierization nor rapid deglacierization were predominant MMB determinants. This was ascribed to the specific environmental conditions at the MC, where the rapidly retreating Pasterze glacier has formed a harsh unstable proglacial, but also a benign floodplain area, with the former suppressing and the latter supporting the structural development of the MMB. Comparisons of similarly aged riverine habitats of the MC proglacial and the KC main channel further evidenced developmental suppression of the MMB (64 taxa) by the rapidly retreating MC glacier, unlike the moderate glacial retreat in the KC (130 taxa). Habitat conditions interacting with melt periods explained the differences in MMB resemblance patterns, which themselves differentially reflected the spatiotemporal habitat settings imposed by the different glacier activities. The varying glacial influences were represented by a glaciality index (GIm) based on water temperature, electrical conductivity, and stream bed stability. The taxonomic richness of nematodes, rotifers, algae, and diatoms was distinctly related to this index, as were most MMB abundances. However, the strongest relationships to the GIm were those of nematode abundances and maturity. Our observations highlight the intense response of the MMB to ongoing glacier retreat and the utility of a simple index to reveal such patterns.  相似文献   

3.
1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream‐downstream gradient of increasing temperature and groundwater contribution to river flow. 2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis. 3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C. 4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time. 5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species‐rich habitats that added many species to the community of the main channel.  相似文献   

4.
In mountains, environmental gradients are steep in both terrestrial and aquatic systems, and climate change is causing upward shifts of physical and biological features of these gradients. Glacial streams are an interesting system to evaluate such shifts both because streams have a linear nature (for simplicity of analysis), and because the stream habitat will at least temporarily lengthen as it follows receding glaciers upward. The Tschierva Glacier, Swiss Alps, receded 482 m upstream from 1997 to 2008. We tested the null hypothesis that the physical and biological stream gradient below this glacier maintained the same structure between these time periods, but simply shifted upward following the glacial source. We compared longitudinal patterns of water temperature and zoobenthic community structure in 1997 and 2007–2008 during three seasons (spring, summer, fall) along the uppermost ca. 5 stream km. Upward shifts were evident, including colonization of the newly exposed stream reaches by cold‐adapted taxa, and the appearance in 2007/2008 of four lower‐altitude species that were previously absent. Overall, however, results rejected the null hypothesis, instead revealing significant changes in gradient structures. These included a more steeply increasing temperature profile downstream of the glacier and increased amplitude of seasonal community turnover in 2007/2008 vs. 1997. Long‐term (1955–2007) flow records revealed increasing short‐term and seasonal hydrologic variability, which might have influenced the increased intra‐annual community variability. The steepening of the temperature gradient was likely caused by a warming lake‐outlet tributary upon which glacial influence was diminished between 1997 and 2007/2008. These results suggest that upward‐shifting gradients in glacial streams can involve complex interactions with other landscape elements and that local‐scale climate response can progress even more rapidly than the rate of glacial recession.  相似文献   

5.
1. The ecology of glacier‐fed streams at temperate latitudes has been intensely studied in recent years, leading to the development of a well‐validated conceptual model on the longitudinal distribution of macroinvertebrate communities downstream of the glacier margin (Freshwater Biology, 2001a; 46 , 1833). However, to our knowledge, the ecology of tropical glacier‐fed streams has not yet been studied. 2. We sampled benthic macroinvertebrates and measured environmental variables at nine sites between 4730 and 4225 m altitude along a 4.3 km stretch of a glacier‐fed stream 40 km south of the equator in the Ecuadorian Andes. Our goal was to study the longitudinal distribution of the fauna in relation to environmental factors and to compare this with the conceptual model based on temperate–arctic glacier‐fed streams. 3. Total density of invertebrates differed considerably at the two highest altitude sites; 4600 m?2 at a pro‐glacial lake outlet and only 4 m?2 at a site originating directly from the glacier snout. Otherwise, there was a downstream decrease in density to about 825 m?2 at the three lowest sites. Taxon richness increased with distance from the glacier, very similar to the pattern predicted. A total of 28 taxa were collected; two at the glacier snout, seven at the nearby pro‐glacial lake outlet, 13 at site 2 (<400 m from the glacier) and 20 at the lowest sites. 4. The numerical percentage of Chironomidae (Diptera) decreased downstream from 100 to 44%. The subfamily Podonominae was numerous at the highest sites but became much less important further downstream. The Orthocladiinae were important both in numbers and species at all sites, while Diamesinae were numerous only in the middle of the reach studied and were completely absent from the upper three sites. The limited importance of the Diamesinae, and its replacement by Podonominae, is different from the pattern typically observed in north‐temperate glacier‐fed streams. This could be because of the fact that the genus Diamesa is missing from the Neotropics. 5. Stream temperature and channel stability explained most of the variability in faunal composition and richness, supporting the model. Stability increased systematically downstream while temperature did not. Surprisingly, no classical kryal zone (Tmax < 4 °C) was found, as even the site closest to the glacier snout (50 m) had a Tmax of 15 °C and no site had Tmax < 8 °C. We propose that this might be a general feature of equatorial glacial streams.  相似文献   

6.
The physico-chemical habitat template of glacial streams in the Alps is characterized by distinct and predictable changes between harsh and relatively benign periods. Spring and autumn were thought to be windows of favorable environmental conditions conducive for periphyton development. Periphyton biomass (measured as chlorophyll a and ash-free dry mass) was quantified in five glacial and three non-glacial streams over an annual cycle. One glacial stream was an outlet stream of a proglacial lake. In all glacial streams, seasonal patterns in periphyton were characterized by low biomass during summer high flow when high turbidity and transport of coarse sediment prevailed. With the end of icemelt in autumn, environmental conditions became more favorable and periphyton biomass increased. Biomass peaked between late September and January. In spring, low flow, low turbidity, and a lack of coarse sediment transport were not paralleled by an increase in periphyton biomass. In the non-glacial streams, seasonal periphyton patterns were similar to those of glacial streams, but biomass was significantly higher. Glacier recession from climate change may shift water sources in glacier streams and attenuate the glacial flow pulse. These changes could alter predicted periods of optimal periphyton development. The window of opportunity for periphyton accrual will shift earlier and extend into autumn in channels that retain surface flows.  相似文献   

7.
Aim Small (< 1 km2) alpine glaciers are likely to disappear in this century, resulting in decreased regional habitat heterogeneity in associated streams. Both heterogeneity within and spatial isolation among glacier‐influenced streams can enhance beta diversity of stream‐dwelling organisms. We measured beta at both community and population‐genetic levels within and among streams currently influenced by small Pyrenean glaciers. We aimed to evaluate whether patterns are analogous between the two levels, to apply various approaches for characterizing beta, and to infer the outcome of future glacier loss on regional biodiversity. Location Four glacier‐fed basins in the Parc National des Pyrénées, France. Methods We classified each of 18 stream reaches across the basins into either high‐, mid‐ or low‐‘glaciality’ (glacial influence) groups according to four physicochemical characteristics. At each reach, we collected macroinvertebrate communities and evaluated mitochondrial DNA haplotypes for 11–13 individuals of Baetis alpinus Pictet. Using taxa/haplotypes as basic units, we evaluated community and population‐genetic beta diversity simultaneously. We measured beta diversity in three major ways: as multivariate (Sørensen's dissimilarity, Jost D) and ‘classical’ (gamma/alpha) variation to compare among glaciality groups, and as turnover along the glaciality gradient within each basin. Results For most approaches at both organizational levels, beta was greatest among high‐glaciality reaches, absolute values of variation of beta in high‐glaciality streams were strikingly similar between levels, and the steepest turnover within basins occurred between high‐ and mid‐glaciality reaches. Therefore, high‐glaciality reaches contained assemblages and populations that were unique both within that stream type (among basins) and compared with other stream types within basins. Main conclusions Parallel beta diversity patterns at population‐genetic and community levels suggested that environmental drivers influence these levels analogously. Extreme conditions (e.g. low temperature, high instability, isolation) in high‐glaciality streams probably enhance beta at both levels. Stream beta diversity is likely to decrease substantially with continued glacial reduction in this system.  相似文献   

8.
The Coast Mountains of southeast Alaska are currently experiencing some of the highest rates of glacier volume loss on Earth, with unknown implications for proglacial stream biogeochemistry. We analyzed streamwater for δ18O and dissolved organic matter (DOM) biogeochemistry (concentration, δ13C-dissolved organic carbon (DOC), and fluorescence characterization) during the 2012 glacial runoff season from three coastal watersheds in southeast Alaska that ranged in glacier coverage from 0 to 49% and a glacier outflow stream. Our goal was to assess how DOM biogeochemistry may change as receding glaciers are replaced by forests and glaciers contribute less meltwater to streamflow. Discharge and streamwater δ18O varied seasonally reflecting varying contributions of rainfall and snow/icemelt to streamflow over the runoff season. Mean DOC concentrations were lowest in the glacial outflow and highest in the non-glacial stream reflecting an increasing contribution of vascular plant-derived carbon with decreasing watershed glaciation. Fluorescence and δ13C-DOC signatures indicated that DOM shifted from vascular plant-derived, humic-like material in the non-glacial stream toward more δ13C-DOC enriched, glacier-derived DOM in the glacial outflow. Streamwater δ18O was significantly correlated to DOC concentration, δ13C-DOC, and protein-like fluorescence of streamwater DOM (all P < 0.05), demonstrating that changes in the source of streamwater across the glacial watershed continuum have important implications for the amount and quality of stream DOM export. Overall, our findings show that continued glacial recession and subsequent changes in glacial runoff could substantially influence the biogeochemistry of coastal temperature watersheds by altering the timing, magnitude, and chemical signature of DOM delivered to streams.  相似文献   

9.
  1. Glacial retreat, accompanied by shifts in riparian vegetation and glacier meltwater inputs, alters the energy supply and trophic structure of alpine stream food webs. Our goal in this study was to enhance understanding of dietary niches of macroinvertebrates inhabiting different alpine streams with contrasting glacial and non‐glacial (groundwater, precipitation, snowmelt) water inputs in conjunction with seasonal and habitat‐specific variation in basal resource availability.
  2. We measured a range of stream physico‐chemical attributes as well as carbon and nitrogen isotopes (δ13C, δ15N) of macroinvertebrates and primary food sources at seven sites across seasons within a Swiss glaciated catchment (Val Roseg) undergoing rapid glacial retreat (1–2 km between 1997 and 2014). Sampling sites corresponded to streams used in a previous (1997/1998) study within the same alpine catchment.
  3. Physico‐chemical attributes showed wide variation in environmental conditions across streams and seasons. Significant correlation among physico‐chemical proxies of glacier meltwater (phosphate‐P, total inorganic carbon, conductivity, turbidity) and macroinvertebrate δ13C, δ15N, and size‐corrected standard ellipse area (a proxy for feeding niche width) values showed that the extent of glacial water input shapes the energy base among alpine streams. Feeding niche differences among common alpine stream insect taxa (Chironomidae, Baetidae, Heptageniidae) were not significant, indicating that these organisms probably are plastic in feeding behaviour, opportunistically relying on food resources available in a particular stream and season.
  4. Seasonal trends in macroinvertebrate δ13C largely followed patterns in periphyton δ13C values, indicating that autochthonous resources were the main consumer energy source within the stream network, as shown previously. The overall range in macroinvertebrate δ13C (?33.5 to ?18.4‰) and δ15N (?6.9 to 6.7‰) values also corresponded to values measured in the previous study, suggesting that macroinvertebrates altered diets in line with changes in environmental conditions and food resources during a period of rapid glacial retreat. Our results suggest that environmental changes brought on by rapid glacial retreat have not yet caused a profound change in the trophic structure within these fluvial networks.
  相似文献   

10.
1. The longitudinal distribution of macroinvertebrates was investigated in June, August and September 1996 and 1997 in the Conca glacial stream and its tributary (Italian Alps; 46°N, 10°E). The principal aim was to test the 22 model that predicts the succession of faunal groups downstream of the glacial snout in relation to water temperature and channel stability. The effect of a non‐glacial tributary on the taxonomic richness and density patterns occurring in the glacial stream was also considered. 2. Channel stability showed an atypical longitudinal trend in the Conca glacial stream, being high in the upper part with Pfankuch Index values between 30 and 33. Water temperature exceeded 6 °C at all stations, with average values below 2 °C occurring only within 700 m from the glacial snout. 3. Taxonomic richness and diversity increased downstream. Taxonomic richness in the glacial stream (at about 1.5 km from the glacier) was comparable with the tributary and the reach after the confluence. Abundance also increased downstream in the glacial stream, but not as greatly as the number of taxa. 4. At higher taxonomic levels, the community structure in the tributary stations appeared to be similar to the two stations in the glacial stream just upstream of the confluence. The effect of the tributary was evident mainly at the genus or species level of the Chironomidae community. Some taxa found in the non‐glacial stream (e.g. Cricotopus fuscus, Eukiefferiella coerulescens, Metriocnemus sp., Paratrichocladius rufiventris, P. skirwitensis, Rheocricotopus effusus and Smittia sp.) were found also in the Conca stream but only after the confluence. 5. The upper glacial reach (within 700 m from the glacier snout) was dominated by the chironomid Diamesa spp. Less than 400 m from the glacier other Diamesinae (Pseudokiefferiella parva) and a few Orthocladiinae, especially Orthocladius (Euorthocladius) rivicola gr., colonized the stream. Some Diamesinae maintained relatively dense populations at mean water temperature around 5 °C, while some Orthocladiinae colonized reaches with mean water temperature <3 °C. 6. Contrary to the 22 model, Dipteran families such as Empididae and Limoniidae were more abundant in the upper stations than Simuliidae; non‐insects such as Nematoda and Oligochaeta were also numerous at some sites. Leuctridae, Taeniopterygidae and Nemouridae were the first Plecoptera to appear upstream, while Chloroperlidae were restricted to the lower reaches. Among Ephemeroptera, Heptageniidae were more abundant than Baetidae in the glacial sites. 7. In this glacial system channel stability and maximum temperature did not show the expected longitudinal trend and thus a typical kryal community was confined within 700 m from the glacier snout where summer mean water temperature was below 4 °C.  相似文献   

11.
We quantified stream temperature response to in‐stream habitat restoration designed to improve thermal suitability and resiliency of a high‐elevation Appalachian stream known to support a temperature‐limited brook trout population. Our specific objectives were to determine if: (1) construction of deep pools created channel unit‐scale thermal refugia and (2) reach scale stream channel reconfiguration reduced peak water temperatures along a longitudinal continuum known to be highly susceptible to summer‐time warming. Contrary to expectations, constructed pools did not significantly decrease channel unit‐scale summer water temperatures relative to paired control sites. This suggests that constructed pools did not successfully intercept a cool groundwater source. However, we did find a significant effect of stream channel restoration on reach‐scale thermal regimes. Both mean and maximum daily stream temperatures experienced significantly reduced warming trends in restored sections relative to control sections. Furthermore, we found that restoration efforts had the greatest effect on stream temperatures downstream of large tributaries. Restoration appears to have significantly altered thermal regimes within upper Shavers Fork, largely in response to changes in channel morphology that facilitated water movement below major cold‐water inputs. Decreased longitudinal warming will likely increase the thermal resiliency of the Shavers Fork main‐stem, sustaining the ability of these key large river habitats to continue supporting critical metapopulation processes (e.g. supplemental foraging and dispersal among tributary populations) in the face of climate change.  相似文献   

12.
One impact of climate change is the rapid shrinking of glaciers, resulting in microorganisms deposited into glacial snow or ice being exposed to new environments such as glacier foreland. A pyrosequencing analysis based on the bacterial 16S rRNA gene showed that bacterial diversity was the highest in proglacial soil, followed by that of glacial snow in ablation zone, then by that of glacial snow in the accumulation area, finally by that of glacial snow in glacier terminus, with the combination of Chao1, ACE, Shannon and Simpson analysis. Eighteen phyla were detected from the 7 samples, but mainly composed of Proteobacteria, Actinobacteria and Bacteroidetes. Flavobacterium, Massilia, Pedobacter, Polaromonas were more abundant in glacial snow samples than in glacial soil sample. Massilia was rarely reported in other environments, implying the necessity for its conservation under scenarios of glacier and snowpack loss induced by climate change.  相似文献   

13.
River floodplains are composed of a shifting mosaic of aquatic and terrestrial habitats. Each habitat type exhibits distinct environmental and ecological properties. Temperature is a key property driving ecological processes and controlling the composition and distribution of biota. However, given the size and complexity of floodplains, ground surveys based on point measurements are spatially limited. In this study, we applied thermal infrared (IR) imagery to quantify surface temperature patterns at 12–15 min intervals over 24 h cycles in two near-natural Alpine river floodplains (Roseg, Tagliamento). Furthermore, vertical temperature distribution was measured at 3–5 min intervals in unsaturated gravel sediment deposits (at 1 cm distances; 0–29 cm depth). Each habitat type exhibited a distinct thermal signature creating a complex thermal mosaic. The diel temperature pulse and maximum daily temperature were the main thermal components that differentiated habitat types. In both floodplains, exposed gravel sediments exhibited the highest diel pulse (up to 23°C), whereas in aquatic habitats the pulse was as low as 11°C (main channel in the Roseg floodplain). In the unsaturated gravel sediment deposits, the maximum diel kinetic temperature pulse ranged from 40.4°C (sediment surface) to 2.7°C (29 cm sediment depth). Vertically, the spatiotemporal variation of temperature was about as high as horizontally across the entire floodplain surface. This study emphasized that remotely sensed thermal IR imagery provides a powerful non-invasive method to quantitatively assess thermal heterogeneity of complex aquatic and terrestrial ecosystems at a resolution required to understand ecosystem processes and the distribution of biota.  相似文献   

14.
1. Macroinvertebrates were collected and physico‐chemical variables measured at 16 stream sites in Western Greenland during July 1999. Eight sites were located on Disko Island in an arctic oceanic climate and eight sites in the Kangerlussuaq area close to the icecap where the climate is arctic continental. The streams had different water sources (glacial, groundwater, snowmelt and lake water). 2. The streams showed pronounced differences in water temperature (2.2–17.3 °C), concentrations of suspended solids (0–2400 mg L?1), and conductivity (10–109 μS cm?1). Principal component analysis (PCA) analysis of the physico‐chemical variables separated the Disko Island sites into a distinct group, whereas the sites in the Kangerlussuaq area were more dispersed. 3. A total of 56 macroinvertebrate species were found, including 31 species of Chironomidae, the most abundant of which was Orthocladius thienemanni. Diamesa sp. was only the sixth most abundant chironomid taxon. Species composition varied between sites, and abundance varied from about 20 individuals m?2 in a glacier fed stream to more than 16 000 m?2 in a lake outlet. 4. The macroinvertebrate communities of the 16 streams were separated into five TWINSPAN groups reflecting water source, irrespective of region. Lake outlets and ground‐water‐fed streams had the highest species richness and abundance, temperature and bed stability, while glacier‐fed streams were characterized by low species richness, abundance, temperature, bed stability and high concentrations of suspended solids. Macroinvertebrate species richness was positively correlated with water temperature and negatively with bed stability. Conductivity was positively correlated with invertebrate abundance. 5. The results of this study suggest that the source of stream water can be used to predict invertebrate community composition in Greenlandic streams and thus the effects of changes in water balance and flow regime, and to identify sites of special conservation interest.  相似文献   

15.
Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.  相似文献   

16.
Bacterial production in glacial runoff and aquatic habitats along a c. 500 m transect from the ablation area of a Svalbard glacier (Midre Lovénbreen, 79 degrees N, 12 degrees E) down to a series of proglacial lakes in its forefield were assessed. In addition, a series of in situ experiments were conducted to test how different nutrient sources (glacial flour and dissolved organic matter derived from goose faeces) and temperature affect bacterial abundance and production in these ecosystems. Bacterial abundance and production increased significantly along this transect and reached a maximum in the proglacial lakes. Bacterial diversity profiles as assessed by denaturing gradient gel electrophoresis indicated that communities in glacial runoff were different from those in proglacial lakes. Heterotrophic bacterial production was mainly controlled by temperature and phosphorus limitation. Addition of both glacial flour and dissolved organic matter derived from goose faeces stimulated bacterial production in those lakes. The results suggest that glacial runoff sustains an active bacterial community which is further stimulated in proglacial lakes by higher temperatures and nutrient inputs from bird faeces. Thus, as in maritime temperate and Antarctic settings, bacterial communities developing in the recently deglaciated terrain of Svalbard receive important inputs of nutrients via faunal transfers from adjacent ecosystems.  相似文献   

17.
Late Glacial and Holocene environmental changes were reconstructed using physical, chemical and biological proxies in Lake Myklevatnet, Allmenningen, (5º13′17″E, 61º55′13″N) located at the northern side of Nordfjorden at the coast of western Norway. Myklevatnet (123 m a.s.l.) lies above the Late Glacial marine limit and contains sediments back to approximately 14,300 years before a.d. 2000 (b2k). Because the lake is located ~48 km beyond the margin of the Younger Dryas (YD) fjord and valley glaciers further inland, and did not receive glacier meltwater from local glaciers during the YD, the lake record provides supplementary information to Lake Kråkenes that received glacial meltwater from a local YD glacier. Lake Myklevatnet has a small catchment and is sensitive to Late Glacial and Holocene climate and environmental changes in the coastal region of western Norway. The age-depth relationship was inferred from a radiocarbon- and tephra-based smoothing-spline model with correlated ages from oxygen isotope maxima and minima in the Late Glacial sequence of the NGRIP ice core (in years b2k) to refine the basal chronology in the Myklevatnet record. The results indicate a two-step YD warming, colder early YD temperatures than in the later part of the YD, and considerably more climate and environmental variability during the late Holocene in western Norway than recorded previously in the oxygen isotopes from Greenland ice cores. The Myklevatnet record is also compared with other Late Glacial and Holocene terrestrial and marine proxy reconstructions in the North Atlantic realm.  相似文献   

18.
19.
To evaluate the influence of main channel–floodplain connectivity on fish assemblage diversity in floodplains associated with streams and small rivers, fish assemblages and habitat characteristics were surveyed at 24 stream reaches in the Champlain Valley of Vermont, U.S.A. Fish assemblages differed markedly between the main channel and the floodplain. Fish assemblage diversity was greatest at reaches that exhibited high floodplain connectivity. Whereas certain species inhabited only main channels or floodplains, others utilized both main channel and floodplain habitats. Both floodplain fish α-diversity and γ-diversity of the entire stream corridor were positively correlated with connectivity between the main channel and its floodplain. Consistent with these results, species turnover (as measured by β-diversity) was negatively correlated with floodplain connectivity. Floodplains with waterbodies characterized by a wide range of water depths and turbidity levels exhibited high fish diversity. The results suggest that by separating rivers from their floodplains, incision and subsequent channel widening will have detrimental effects on multiple aspects of fish assemblage diversity across the stream–floodplain ecosystem.  相似文献   

20.
The microbial diversity and abundance in surface snow at different altitudes (5300 and 5504 m above sea level), a moraine lake and a glacial stream in the Yala Glacier on the southern slope of the Himalayas were investigated through a 16S rRNA gene clone library and flow cytometry approaches. Cell abundance in different habitats changed from 1.1 × 104 to 25 × 104 cells mL−1, with the highest abundance in the moraine lake and the lowest abundance in the snow at 5504 m. Microbial communities in the snow were significantly different from those in the moraine lake and stream, although they were similar within snow and within the aquatic habitats. The two snow libraries were both dominated by Cyanobacteria, which accounted for about half of the total, followed by the Alphaproteobacteria and Firmicutes. The moraine lake and stream libraries were dominated by the Bacteroidetes and Betaproteobacteria, followed by the Actinobacteria. The results indicated that snow and water were highly diverse systems even in the same glacier. Microbial communities in the snow on the Yala Glacier were distinctly different from those in the East Rongbuk Glacier on the northern slope of Himalayas. However, microbes in the moraine lakes at two glaciers had similar community features. The snow habitat was easily affected by various environmental factors, while the aquatic habitats were comparatively stable in different glaciers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号