首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylene blue (MB) is a thiazine dye with cationic and lipophilic properties that acts as an electron transfer mediator in the mitochondria. Due to this metabolic improving activity and free radicals scavenging effects, MB has been used in the treatment of methemoglobinemia and ifosfamide-induced encephalopathy. Considering that methylmalonic acidemia consists of a group of inherited metabolic disorders biochemically characterized by impaired mitochondrial oxidative metabolism and reactive species production, we decided to investigate whether MB, protects against the behavioral and neurochemical alterations elicited by the intrastriatal injection of methylmalonate (MMA). In the present study we showed that intrastriatal injection of MB (0.015-1.5nmol/0.5microl) protected against seizures (evidenced by electrographic recording), protein carbonylation and Na(+),K(+)-ATPase inhibition ex vivo induced by MMA (4.5micromol/1.5microl). Furthermore, we investigated whether convulsions elicited by intrastriatal MMA administration are accompanied by striatal protein carbonyl content increase and changes in Na(+),K(+)-ATPase activity in rat striatum. The effect of MB (0.015-1.5nmol/0.5microl) and MMA (4.5micromol/0.5microl) on striatal NO(x) (NO(2) plus NO(3)) content was also evaluated. Statistical analysis revealed that the MMA-induced NO(x) content increase was attenuated by intrastriatal injection of MB and the duration of convulsive episodes correlated with Na(+),K(+)-ATPase inhibition, but not with MMA-induced total protein carbonylation. In view of that MB decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters, the authors suggest that MB may be of value to attenuate neurological deficits of methylmalonic acidemic patients.  相似文献   

2.
We investigated whether intrastriatal (i.s.) administration of 5-aminolevulinic acid (ALA) induces oxidative damage and whether behavioral alterations induced by i.s. administration of ALA could be affected by antioxidants. Unilateral injection of ALA (6 micromol/striatum) increased (approximately 30%) thiobarbituric acid-reactive substances (TBARS), but did not affect striatal content of total thiol groups. ALA-induced body asymmetry was not prevented by pretreatment with ascorbic acid (100 mg/kg, s.c.), dimethyl sulfoxide (DMSO, 0.5 microl/striatum, i.s.) or ebselen (10 nmol/striatum, i.s.). ALA-induced convulsions were not prevented by ascorbic acid, but were partially prevented by DMSO and completely prevented by ebselen. Ebselen completely prevented the increase of striatal TBARS induced by ALA. Results obtained suggest the involvement of reactive species in ALA-induced convulsions and may be of value in understanding the physiopathology of neurological dysfunctions associated to ALA overload.  相似文献   

3.
The objective of this research was to verify the effects of dietary alpha-tocopheryl acetate (50 vs. 200 mg/kg diet) and ascorbic acid (0 vs. 1 g/L water) on the relative amounts on semen and motion characteristics, oxidative stability and fertilizing ability of rabbit spermatozoa stored for 24 h at 5 degrees C. A high amount of dietary (alpha-tocopheryl acetate significantly increased the level of Vitamin E in the semen (0.90 vs. 0.41 micromol/L) and its oxidative stability after storage (Thiobarbituric Acid Reactive Substances-- TBARS 15.88 vs. 20.90 nmol Malondialdehyde--MDA/mL). Ascorbic acid showed a different effect in relation to the Vitamin E status of animals: when associated with the higher level of Vitamin E it increased the (alpha-tocopherol and the oxidative stability of semen (2.67 micromol/L and 12.25 nmol MDA/mL, respectively), whereas both parameters were reduced with lower Vitamin E (0.13 micromol/L and 21.20 nmol MDA/mL). Semen traits were not modified by the separate supplementation of supranutritional levels of vitamins, whereas their combination significantly improved the viability and the kinetics of spermatozoa (e.g. track speed: 95.13 vs. 71.31 microm sec(-1)) with an increase in fertility rate (70.0 vs. 63.3; P=0.06) that could be considered almost significant.  相似文献   

4.
Methylmalonic acidurias are biochemically characterized by an accumulation of methylmalonate (MMA) and alternative metabolites. There is growing evidence for basal ganglia degeneration in these patients. The pathomechanisms involved are still unknown, a contribution of toxic organic acids, in particular MMA, has been suggested. Here we report that MMA induces neuronal damage in cultures of embryonic rat striatal cells at a concentration range encountered in affected patients. MMA-induced cell damage was reduced by ionotropic glutamate receptor antagonists, antioxidants, and succinate. These results suggest the involvement of secondary excitotoxic mechanisms in MMA-induced cell damage. MMA has been implicated in inhibition of respiratory chain complex II. However, MMA failed to inhibit complex II activity in submitochondrial particles from bovine heart. To unravel the mechanism underlying neuronal MMA toxicity, we investigated the formation of intracellular metabolites in MMA-loaded striatal neurons. There was a time-dependent intracellular increase in malonate, an inhibitor of complex II, and 2-methylcitrate, a compound with multiple inhibitory effects on the tricarboxylic acid cycle, suggesting their putative implication in MMA neurotoxicity. We propose that neuropathogenesis of methylmalonic aciduria may involve an inhibition of complex II and the tricarboxylic acid cycle by accumulating toxic organic acids, and synergistic secondary excitotoxic mechanisms.  相似文献   

5.
Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.  相似文献   

6.
Large elastic artery compliance is reduced and arterial blood pressure (BP) is increased in the central (cardiothoracic) circulation with aging. Reactive oxygen species may tonically modulate central arterial compliance and BP in humans, and oxidative stress may contribute to adverse changes with aging. If so, antioxidant administration may have beneficial effects. Young (Y; 26 +/- 1 yr, mean +/- SE) and older (O; 63 +/- 2 yr, mean +/- SE) healthy men were studied at baseline and during acute (intravenous infusion; Y: n = 13, O: n = 12) and chronic (500 mg/day for 30 days; Y: n = 10, O: n = 10) administration of ascorbic acid (vitamin C). At baseline, peripheral (brachial artery) BP did not differ in the two groups, but carotid artery compliance was 43% lower (1.2 +/- 0.1 vs. 2.1 +/- 0.1 mm(2)/mmHg x 10(-1), P < 0.01) and central (carotid) BP (systolic: 116 +/- 5 vs. 101 +/- 3 mmHg, P < 0.05, and pulse pressure: 43 +/- 4 vs. 36 +/- 3 mmHg, P = 0.16), carotid augmentation index (AIx; 27.8 +/- 7.8 vs. -20.0 +/- 6.6%, P < 0.001), and aortic pulse wave velocity (PWV; 950 +/- 88 vs. 640 +/- 38 cm/s, P < 0.01) were higher in the older men. Plasma ascorbic acid concentrations did not differ at baseline (Y: 71 +/- 5 vs. O: 61 +/- 7 micromol/l, P = 0.23), increased (P < 0.001) to supraphysiological levels during infusion (Y: 1240 +/- 57 and O: 1,056 +/- 83 micromol/l), and were slightly elevated (P < 0.001 vs. baseline) with supplementation (Y: 96 +/- 5 micromol/l vs. O: 85 +/- 6). Neither ascorbic acid infusion nor supplementation affected peripheral BP, heart rate, carotid artery compliance, central BP, carotid AIx, or aortic PWV (all P > 0.26). These results indicate that the adverse changes in large elastic artery compliance and central BP with aging in healthy men are not 1). mediated by ascorbic acid-sensitive oxidative stress (infusion experiments) and 2). affected by short-term, moderate daily ascorbic acid (vitamin C) supplementation.  相似文献   

7.
Oxygen free radicals are highly reactive species that are produced in increased quantities during strenuous exercise and can damage critical biological targets such as membrane phospholipids. The present study examined the effect of acute ascorbic acid supplementation on exercise-induced free radical production in healthy subjects. Results demonstrate increases in the intensity of the alpha-phenyl-tert-butylnitrone adduct (0.05 +/- 0.02 preexercise vs. 0.19 +/- 0.03 postexercise, P = 0.002, arbitrary units) together with increased lipid hydroperoxides (1.14 +/- 0.06 micromol/l preexercise vs. 1.62 +/- 0.19 micromol/l postexercise, P = 0.005) and malondialdehyde (0.70 +/- 0.04 micromol/l preexercise vs. 0.80 +/- 0.04 micromol/l postexercise, P = 0.0152) in the control phase. After supplementation with ascorbic acid, there was no significant increase in the electron spin resonance signal intensity (0.02 +/- 0. 01 preexercise vs. 0.04 +/- 0.02 postexercise, arbitrary units), lipid hydroperoxides (1.12 +/- 0.21 micromol/l preexercise vs. 1.12 +/- 0.08 micromol/l postexercise), or malondialdehyde (0.63 +/- 0.07 micromol/l preexercise vs. 0.68 +/- 0.05 micromol/l postexercise). The results indicate that acute ascorbic acid supplementation prevented exercise-induced oxidative stress in these subjects.  相似文献   

8.
We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.  相似文献   

9.
Triglyceride hydrolysis by the perfused rat hindlimb is enhanced with serotonin-induced nonnutritive flow (NNF) and may be due to the presence of nonnutritive route-associated connective tissue fat cells. Here, we assess whether NNF influences muscle uptake of 0.55 mM palmitate in the perfused hindlimb. Comparisons were made with insulin-mediated glucose uptake. NNF induced during 60 nM insulin infusion inhibited hindlimb oxygen uptake from 22.0 +/- 0.5 to 9.7 +/- 0.8 micromol x g(-1) x h(-1) (P < 0.001), 1-methylxanthine metabolism (indicator of nutritive flow) from 5.8 +/- 0.4 to 3.8 +/- 0.4 nmol x min(-1) x g(-1) (P = 0.004), glucose uptake from 29.2 +/- 1.7 to 23.1 +/- 1.8 micromol x g(-1) x h(-1) (P = 0.005) and muscle 2-deoxyglucose uptake from 82.1 +/- 4.6 to 41.6 +/- 6.7 micromol x g(-1) x h(-1) (P < 0.001). Palmitate uptake, unaffected by insulin alone, was inhibited by NNF in extensor digitorum longus, white gastrocnemius, and tibialis anterior muscles; average inhibition was from 13.9 +/- 1.2 to 6.9 +/- 1.4 micromol x g(-1) x h(-1) (P = 0.02). Thus NNF impairs both fatty acid and glucose uptake by muscle by restricting flow to myocytes but, as shown previously, favors triglyceride hydrolysis and uptake into nearby connective tissue fat cells. The findings have implications for lipid partitioning in limb muscles between myocytes and attendant adipocytes.  相似文献   

10.
To probe the functions of membrane gangliosides, the availability of ganglioside-depleted cells would be a valuable resource. To attempt to identify a useful genetic model of ganglioside depletion, we assessed ganglioside metabolism in murine GM3 synthase (GM3S)-/- knockout primary embryonic fibroblasts (MEF), because normal fibroblast gangliosides (GM3, GM2, GM1, and GD1a), all downstream products of GM3S, should be absent. We found that heterozygote MEF (GM3S+/-) did have a 36% reduced content of qualitatively normal gangliosides (7.0+/-0.8 nmol LBSA/mg cell protein; control: 11+/-1.6 nmol). However, two unexpected findings characterized the homozygous (GM3-/-) MEF. Despite complete knockout of GM3S, (i) GM3-/- MEF retained substantial ganglioside content (21% of normal or 2.3+/-1.1 nmol) and (ii) these gangliosides were entirely different from those of wild type MEF by HPTLC. Mass spectrometry identified them as GM1b, GalNAc-GM1b, and GD1alpha, containing both N-acetyl and N-glycolylneuraminic acid and diverse ceramide structures. All are products of the 0 pathway of ganglioside synthesis, not normally expressed in fibroblasts. The results suggest that complete, but not partial, inhibition of GM3 synthesis results in robust activation of an alternate pathway that may compensate for the complete absence of the products of GM3S.  相似文献   

11.
Hypertension is associated with low plasma ascorbic acid levels and impaired endothelial function. Recent evidence suggests that increased vascular oxidative stress contributes to the pathophysiology of endothelial dysfunction and hypertension. We recently showed that chronic oral ascorbic acid therapy lowers blood pressure in hypertensive patients. We hypothesized that it would also improve endothelial vasomotor function. In a randomized, double-blind, placebo-controlled study, we examined the effect of acute (2 g po) and chronic (500 mg/day for 1 mo) ascorbic acid treatment on brachial artery flow-mediated dilation in 39 patients with hypertension. Compared with 82 age- and gender-matched normotensive controls, these patients had impaired endothelium-dependent, flow-mediated dilation of the brachial artery [8.9 +/- 6.1 vs. 11.2 +/- 5.7% (SD), P < 0.04]. After therapy, plasma ascorbic acid concentrations increased acutely from 50 +/- 12 to 149 +/- 51 micromol/l and were maintained at 99 +/- 33 micromol/l with chronic treatment (both P < 0.001). As previously reported, chronic ascorbic acid therapy reduced systolic and mean blood pressure in these patients. However, acute or chronic ascorbic acid treatment had no effect on brachial artery endothelium-dependent, flow-mediated dilation or on endothelium-independent, nitroglycerin-mediated dilation. These results demonstrate that conduit vessel endothelial dysfunction secondary to hypertension is not reversed by acute or chronic treatment with oral ascorbic acid. The effects of this treatment on resistance vessel vasomotor function warrant further investigation.  相似文献   

12.
A rapid and simple method for the simultaneous analysis of uric and ascorbic acid in extracts of animal tissue is described. The method uses reversed-phase ion-pair chromatography with ultraviolet detection. The technique allows efficient separation of both acids while showing high selectivity, recovery, reproducibility, and sample stability. Calculated levels of both substances in mouse liver tissue were 1.00 +/- 0.05 mumol ascorbic acid/g and 130 +/- 5 nmol uric acid/g.  相似文献   

13.
The formation of neurotoxic beta-amyloid fibrils in Alzheimer's disease (AD) is suggested to involve membrane rafts and to be promoted, in vitro, by enriched concentrations of gangliosides, particularly GM1, and the cholesterol therein. In our study, the presence of rafts and their content of the major membrane lipids and gangliosides in the temporal cortex, reflecting late stages of AD pathology, and the frontal cortex, presenting earlier stages, has been investigated. Whole tissue and isolated detergent-resistant membrane fractions (DRMs) were analysed from 10 AD and 10 age-matched control autopsy brains. DRMs from the frontal cortex of AD brains contained a significantly higher concentration (micromol/micromol glycerophospholipids), of ganglioside GM1 (22.3 +/- 4.6 compared to 10.3 +/- 6.4, p <0.001) and GM2 (2.5 +/- 1.0 compared to 0.55 +/- 0.3, p <0.001). Similar increases of these gangliosides were also seen in DRMs from the temporal cortex of AD brains, which, in addition, comprised significantly lower proportions of DRMs. Moreover, these remaining rafts were depleted in cholesterol (from 1.5 +/- 0.2 to 0.6 +/- 0.3 micromol/micromol glycerophospholipids, p <0.001). In summary, we found an increased proportion of GM1 and GM2 in DRMs, and accelerating plaque formation at an early stage, which may gradually lead to membrane raft disruptions and thereby affect cellular functions associated with the presence of such membrane domains.  相似文献   

14.
PURPOSE: To investigate whether caffeic acid phenethyl ester (CAPE) and cortisone prevent proliferative vitreoretinopathy (PVR). METHODS: Twenty pigmented rabbits were used in this study. All rabbits except controls received an intravitreal injection of 0.15 ml (75,000 U) of platelet-rich plasma into their left eye. The animals were divided into four groups: group I was treated with intraperitoneal injection of 0.5 ml (15 micromol/kg) of CAPE for 3 days, group II received 0.15 ml (4 mg/kg) of intravitreal cortisone, group III received nothing (blank group), and group IV (control group) received only 1 ml of 1% ethanol intraperitoneally daily for 3 days. Proliferative changes were graded in a masked fashion by indirect ophthalmoscopy for a 15-day follow-up period. The malondialdehyde (MDA), reduced glutathione (GSH) and total nitrite (NO) levels were measured in the vitreous humor. RESULTS: The grades of PVR were B-C in group I, and C-D in group II. The PVR grade in the control group was C-D. The mean MDA level in group I (4.0+/-0.8 micromol/l) was significantly lower than in the blank group (6.0 micromol/l) (p < 0.05). The mean GSH level in group I (71.0+/-11.2 micromol/l) was significantly different than in the blank group (p < 0.05). The MDA and GSH levels in group II were 4.7+/-0.6 micromol/l and 53.8+/-7.8 micromol/l, respectively. Both these levels were not significantly different from the blank group (p > 0.05). The NO levels in both treatment groups were significantly lower than in the blank group (p < 0.001). CONCLUSION: These findings suggest an inhibitory effect of CAPE on PVR. The inhibitory effect was supported by lower MDA and NO with higher GSH levels in treatment groups than in the blank group. There was no detected significant effect of cortisone for preventing PVR experimentally.  相似文献   

15.
Alendronate causes serious gastrointestinal adverse effects. The aim of this study was to investigate whether octreotide, a synthetic somatostatin analogue, improves the alendronate-induced gastric injury. Rats were administered 20mg/kg alendronate by gavage for 4 days, either alone or following treatment with octreotide (0.1 ng/kg, i.p.). On the last day, following drug administration, pilor ligation was performed and 2h later, rats were killed and stomachs were removed. Gastric acidity and tissue ulcer index values, lipid peroxidation (as assessed by malondialdehyde, MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity as well as the histologic appearance of the stomach tissues were determined. Chronic oral administration of alendronate induced significant gastric damage, increasing lipid peroxidation (37.1+/-3.2 nmol/g) and myeloperoxidase activity (57.6+/-3.7 U/g), while tissue glutathione levels (09.+/-0.1 micromol/g) decreased. Treatment with octreotide prevented this damage as well as the changes in biochemical parameters (MDA: 23.4+/-1.3 nmol/g; MPO: 31.68 U/g; GSH: 15.+/-0.1 micromol/g). Findings of the present study suggest that alendronate induces oxidative gastric damage by a local irritant effect, and that octreotide ameliorates this damage by inhibiting neutrophil infiltration and reducing lipid peroxidation. Therefore, its therapeutic role as a "ulcer healing" agent must be further elucidated in alendronate-induced gastric mucosal injury.  相似文献   

16.
A method for the assay of dehydroascorbic acid using high-performance liquid chromatography with uv detection is described. The dehydroascorbic acid is separated from ascorbic acid and reduced with dithiothreitol, and is then quantitated as ascorbic acid following rechromatography. Since as little as 22 pmol can be detected, sensitivity is at least 40-fold greater than that of other currently available procedures. This method was used to measure the level of dehydroascorbic acid in normal and chronic lymphocytic leukemia lymphocytes. A significantly higher concentration of dehydroascorbic acid was found in leukemic (21.80 +/- 3.55 nmol/10(8) cells, mean +/- SE) than in normal lymphocytes (9.32 +/- 1.15 nmol/10(8) cells) (P less than 0.03). Analysis of extracts from normal B cell lymphocytes revealed comparable dehydroascorbic acid levels to unfractionated lymphocytes, indicating that the elevated level in chronic lymphocytic leukemia was not simply a reflection of the increased percentage of B lymphocytes in this disorder. These studies illustrate that the technique can be used to measure the dehydroascorbic acid content from sources where only scanty material is available or low levels are found.  相似文献   

17.
The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.  相似文献   

18.
Cardiovagal baroreflex sensitivity (BRS) declines with advancing age in healthy men. We tested the hypothesis that oxidative stress contributes mechanistically to this age-associated reduction. Eight young (23 +/- 1 yrs, means +/- SE) and seven older (63 +/- 3) healthy men were studied. Cardiovagal BRS was assessed using the modified Oxford technique (bolus infusion of 50-100 microg sodium nitroprusside, followed 60 s later by a 100- to 150-microg bolus of phenylephrine hydrochloride) in triplicate at baseline and during acute intravenous ascorbic acid infusion. At baseline, cardiovagal BRS (slope of the linear portion of the R-R interval-systolic blood pressure relation during pharmacological changes in arterial blood pressure) was 56% lower (P < 0.01) in older (8.3 +/- 1.6 ms/mmHg) compared with young (19.0 +/- 3.1 ms/mmHg) men. Ascorbic acid infusion increased plasma concentrations similarly in young (62 +/- 9 vs. 1,249 +/- 72 micromol/l for baseline and during ascorbic acid; P < 0.05) and older men (62 +/- 4 vs. 1,022 +/- 55 micromol/l; P < 0.05) without affecting baseline blood pressure, heart rate, carotid artery compliance, or the magnitude of change in systolic blood pressure in response to bolus sodium nitroprusside and phenylephrine hydrochloride infusion. Ascorbic acid (vitamin C) infusion increased cardiovagal BRS in older (Delta58 +/- 16%; P < 0.01), but not younger (Delta - 4 +/- 4%) men. These data provide experimental support for the concept that oxidative stress contributes mechanistically to age-associated reductions in cardiovagal BRS in healthy men.  相似文献   

19.
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.  相似文献   

20.
We recently demonstrated that muscle protein synthesis was stimulated to a similar extent in young and elderly subjects during a 3-h amino acid infusion. We sought to determine if a more practical bolus oral ingestion would also produce a similar response in young (34 +/- 4 yr) and elderly (67 +/- 2 yr) individuals. Arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol.kg(-1).min(-1)) of L-[ring-2H5]phenylalanine. Muscle protein kinetics and mixed muscle fractional synthetic rate (FSR) were calculated before and after the bolus ingestion of 15 g of essential amino acids (EAA) in young (n = 6) and elderly (n = 7) subjects. After EAA ingestion, the rate of increase in femoral artery phenylalanine concentration was slower in elderly subjects but remained elevated for a longer period. EAA ingestion increased FSR in both age groups by approximately 0.04%/h (P < 0.05). However, muscle intracellular (IC) phenylalanine concentration remained significantly higher in elderly subjects at the completion of the study (young: 115.6 +/- 5.4 nmol/ml; elderly: 150.2 +/- 19.4 nmol/ml). Correction for the free phenylalanine retained in the muscle IC pool resulted in similar net phenylalanine uptake values in the young and elderly. EAA ingestion increased plasma insulin levels in young (6.1 +/- 1.2 to 21.3 +/- 3.1 microIU/ml) but not in elderly subjects (3.0 +/- 0.6 to 4.3 +/- 0.4 microIU/ml). Despite differences in the time course of plasma phenylalanine kinetics and a greater residual IC phenylalanine concentration, amino acid supplementation acutely stimulated muscle protein synthesis in both young and elderly individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号