首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Two single-stranded nucleic acid-binding proteins, UP1 and UP2, that were originally reported by Herrick and Alberts (Herrick, G., and Alberts, B. (1976) J. Biol. Chem. 251, 2124-2132) have been purified to apparent homogeneity from calf thymus by high performance liquid chromatography. The amino acid sequence of UP1 (Williams, K. R., Stone, K. L., LoPresti, M. B., Merrill, B. M., and Planck, S. R. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 5666-5670) reveals that UP1 contains 195 amino acids, including one dimethylarginine residue near its COOH terminus. Further analysis of this sequence now demonstrates that UP1 contains a 91-residue internal repeat such that when residues 3-93 (the "A" region) are aligned with residues 94-194 (the "B" region), 32% of the amino acids in these two regions are identical and an additional 39% of those changes that are seen could be accomplished by single base changes. The high degree of internal homology between residues 51-61 and 143-152 and in particular the high density of aromatic and positively charged amino acids in these two regions suggest that residues 51-61 and 143-152 may constitute two independent DNA-binding sites. Solid-phase sequencing of three tryptic peptides that together account for 9% of the 39,500-dalton UP2 protein demonstrate that there is a high degree of sequence homology between UP1 and UP2. Of the 34 residues that have been sequenced in UP2, 44% are identical in both UP1 and UP2. The blocked NH2 terminus, amino acid composition, particularly with regard to its high glycine content and the presence of dimethylarginine, and molecular weight of UP2 suggest this protein is related to proteins that have previously been found associated with heterogeneous RNA. Taken together, these data indicate that both UP1 and UP2 belong to a new family of single-stranded nucleic acid-binding proteins that may be closely related to heterogeneous ribonucleoproteins.  相似文献   

2.
A cDNA clone which expresses a protein that cross-reacts immunologically with the human C1 and C2 hnRNP core proteins has been isolated. The clone was selected by a sensitive immunochemical assay employing an avidin-biotin complex for detection, and identified as a clone for the hnRNP C proteins by a highly sensitive antibody select assay that is described here. The clone contains 677 nucleotides, and, as shown by northern blotting, is derived from a 1.5 Kb poly(A)+ mRNA. There are regions of strong homology between the human and mouse genes, weak homology is seen with chicken DNA, and very little, if any, homology can be detected with Drosophila, Artemia, sea urchin, or yeast DNAs. Two peptides (a total of 24 amino acids) of the calf thymus single-stranded DNA binding protein UP2 show perfect homology with the deduced amino acid sequence of the clone, suggesting that UP2 is related to the hnRNP C proteins. There is also a region that has a sequence very similar to two regions of the single-stranded DNA binding protein UP1 that contain proposed DNA binding sites.  相似文献   

3.
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is an abundant nuclear protein that participates in RNA processing, alternative splicing, and chromosome maintenance. hnRNP A1 can be proteolyzed to unwinding protein (UP1), a 22.1-kDa protein that retains a high affinity for purine-rich single-stranded nucleic acids, including the human telomeric repeat (hTR) d(TTAGGG)n. Using the structure of UP1 bound to hTR as a guide, we have incorporated the fluorescent guanine analog 6-MI at one of two positions within the DNA to facilitate binding studies. One is where 6-MI remains stacked with an adjacent purine, and another is where it becomes fully unstacked upon UP1 binding. The structures of both modified oligonucleotides complexed to UP1 were determined by x-ray crystallography to validate the efficacy of our design, and 6-MI has proven to be an excellent reporter molecule for single-stranded nucleic acid interactions in positions where there is a change in stacking environment upon complex formation. We have shown that UP1 affinity for d(TTAGGG)2 is approximately 5 nm at 100 mm NaCl, pH 6.0, and our binding studies with d(TTAGG(6-MI)TTAGGG) show that binding is only modestly sensitive to salt and pH. UP1 also has a potent G-tetrad destabilizing activity that reduces the Tm of the hTR sequence d(TAGGGT)4 from 67.0 degrees C to 36.1 degrees C at physiological conditions (150 mm KCl, pH 7.0). Consistent with the structures determined by x-ray crystallography, UP1 is able to bind the hTR sequence in solution as a dimer and supports a model for hnRNP A1 binding to nucleic acids in arrays that may make a contiguous set of anti-parallel single-stranded nucleic acid binding clefts. These data suggest that seemingly disparate roles for hnRNP A1 in alternative splice site selection, RNA processing, RNA transport, and chromosome maintenance reflect its ability to bind a purine-rich consensus sequence (nYAGGn) and destabilize potentially deleterious G-tetrad structures.  相似文献   

4.
Antibodies induced against mammalian single-stranded DNA binding protein (ssDBP) UP I were shown to be cross-reactive with most of the basic hnRNP core proteins, the main constituents of 40S hnRNP particles. This suggested a structural relationship between both groups of proteins. Using the anti-ssDBP antibodies, a cDNA clone (pRP10) was isolated from a human liver cDNA library in plasmid expression vector pEX1. By DNA sequencing this clone was shown to encode in its 949 bp insert the last 72 carboxy terminal amino acids of the ssDBP UP I. Thereafter, an open reading frame continued for another 124 amino acids followed by a UAA (ochre) stop codon. Direct amino acid sequencing of a V8 protease peptide from hnRNP core protein A1 showed that this peptide contained at its amino terminus the last 11 amino acids of UP I followed by 19 amino acids which are encoded by the open reading frame of cDNA clone pRP10 immediately following the UP I sequence. This proves that ssDBP UP I arises by proteolysis from hnRNP core protein A1. This finding must lead to a re-evaluation of the possible physiological role of UP I and related ssDBPs. The formerly assumed function in DNA replication, although not completely ruled out, should be reconsidered in the light of a possible alternative or complementary function in hnRNA processing where UP I could either be a simple degradation product of core protein A1 (as a consequence of controlling the levels of active A1) or may continue to function as an RNA binding protein which has lost the ability to interact with the other core proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.  相似文献   

6.
We have studied the domain structure of the A1 heterogeneous nuclear ribonucleoprotein using both partial proteolysis and photochemical cross-linking to oligodeoxynucleotides. Both the intact A1 protein and its proteolytic fragment, the UP1 protein, can be cleaved by Staphylococcus aureus V-8 protease to produce two polypeptides of 92 amino acids. These two polypeptides correspond to the internal repeat sequence previously noted by us to occur in UP1. The two polypeptides can be purified via single-stranded DNA cellulose chromatography and independently cross-linked to [32P]p(dT)8, indicating that each domain can bind to single-stranded nucleic acids. Purification and sequencing of A1 tryptic peptides that had been cross-linked to oligothymidylic acid revealed that 4 phenylalanine residues, phenylalanines 16, 58, 107, and 149 are the sites of covalent adduct formation, with phenylalanine 16 being the major site of cross-linking. These phenylalanine residues are internally homologous when the repeat sequences in A1 are aligned, that is, phenylalanines 16 and 107 occupy analogous positions in the 91-residue repeat, as do phenylalanines 58 and 149. An examination of the primary structures of a variety of eucaryotic RNA-binding proteins with sequence homology to A1 reveals that the cross-linked phenylalanines in A1 are highly conserved among all of these proteins. Our results provide the first experimental evidence that conserved residues in the 90-amino acid repeating domains shared by A1 and other single-stranded nucleic acid binding-proteins form part of an RNA-binding pocket.  相似文献   

7.
Characterization of the domain structure of DNA polymerase beta is reported. Large scale overproduction of the rat protein in Escherichia coli was achieved, and the purified recombinant protein was verified by sequencing tryptic peptides. This protein is both a single-stranded DNA binding protein and a DNA polymerase consisting of one polypeptide chain of 334 amino acids. As revealed by controlled proteolysis experiments, the protein is organized in two relatively protease-resistant segments linked by a short protease-sensitive region. One of these protease-resistant segments represents the NH2-terminal 20% of the protein. This NH2-terminal domain (of about 75 residues) has strong affinity for single-stranded nucleic acids. The other protease-resistant segment, representing the COOH-terminal domain of approximately 250 residues, does not bind to nucleic acids. Neither domain, tested as purified proteins, has substantial DNA polymerase activity. The results suggest that the NH2-terminal domain is principally responsible for the template binding activity of the intact protein.  相似文献   

8.
Cloning of the nucleic acid-binding domain of the rat HnRNP C-type protein   总被引:4,自引:0,他引:4  
A cDNA encoding the nucleic acid-binding domain of the hnRNP C-type protein has been cloned by DNA-affinity screening of pituitary-derived expression libraries. An analysis revealed sequence identity with the human C-type cDNA and demonstrated the presence of a peptide sequence contained within the single-stranded DNA-binding protein, UP2, which was absent from the human cDNA. Structural analysis of the protein encoded by the rat cDNA demonstrated a net charge of +15 with 14.56% and 6.33% lysines and arginines, respectively, and an amino acid sequence that is consistent with an extensive helix-loop-helix-turn-helix structure.  相似文献   

9.
The complete amino acid sequence of ribonuclease U1 (RNase U1), a guanine-specific ribonuclease from a fungus, Ustilago sphaerogena, was determined by conventional protein sequencing, using peptide fragments obtained by several enzymatic cleavages of the performic acid-oxidized protein. The oxidized protein was first cleaved by trypsin and the resulting peptides were purified and their amino acid sequences were determined. These tryptic peptides were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of the oxidized protein. The amino acid sequence thus deduced was further confirmed by isolation and analysis of peptides obtained by digestion of the oxidized protein with lysyl endopeptidase. The location of the disulfide bonds was deduced by isolation and analysis of cystine-containing peptides from a chymotryptic digest of heat-denatured RNase U1. These results showed that the protein is composed of a single polypeptide chain of 105 amino acid residues cross-linked by two disulfide bonds, having a molecular weight of 11,235, and that the NH2-terminus is blocked by a pyroglutamate residue. It has an overall homology with other guanine-specific or related ribonucleases, and shows 48% identity with RNase T1 and 38% identity with RNase U2.  相似文献   

10.
11.
Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.  相似文献   

12.
Characterization of mammalian heterogeneous nuclear ribonucleoprotein complex protein A1 is reported after large-scale overproduction of the protein in Escherichia coli and purification to homogeneity. A1 is a single-stranded nucleic acid binding protein of 320 amino acids and 34,214 Da. The protein has two domains. The NH2-terminal domain is globular, whereas the COOH-terminal domain of about 120 amino acids has low probability of alpha-helix structure and is glycinerich. Nucleic acid binding properties of recombinant A1 were compared with those of recombinant and natural proteins corresponding to the NH2-terminal domain. A1 bound to single-stranded DNA-cellulose with higher affinity than the NH2-terminal domain peptides. Protein-induced fluorescence enhancement was used to measure equilibrium binding properties of the proteins. A1 binding to poly (ethenoadenylate) was cooperative with the intrinsic association constant of 1.5 X 10(5) M-1 at 0.4 M NaCl and a cooperativity parameter of 30. The NH2-terminal domain peptides bound noncooperatively and with a much lower association constant. With these peptides and with intact A1, binding was fully reversed by increasing [NaCl]; yet. A1 binding was much less salt-sensitive than binding by the NH2-terminal domain peptides. A synthetic polypeptide analog of the COOH-terminal domain was prepared and was found to bind tightly to poly-(ethenoadenylate). The results are consistent with the idea that the COOH-terminal domain contributes to A1 binding through both cooperative protein-protein interaction and direct interaction with the nucleic acid.  相似文献   

13.
The mammalian heterogeneous ribonucleoprotein (hnRNP) A1 and its constituent N-terminal domain, termed UP1, have been studied by steady-state and dynamic fluorimetry, as well as phosphorescence and optically detected magnetic resonance (ODMR) spectroscopy at cryogenic temperatures. The results of these diverse techniques coincide in assigning the site of the single tryptophan residue of A1, located in the UP1 domain, to a partially solvent-exposed site distal to the protein's nucleic acid binding surface. In contrast, tyrosine fluorescence is significantly perturbed when either protein associates with single-stranded polynucleotides. Tyr to Trp energy transfer at the singlet level is found for both UP1 and A1 proteins. Single-stranded polynucleotide binding induces a quenching of their intrinsic fluorescence emission, which can be attributed to a significant reduction (greater than 50%) of the Tyr contribution, while Trp emission is only quenched by approximately 15%. Tyrosine quenching effects of similar magnitude are seen upon polynucleotide binding by either UP1 (1 Trp, 4 Tyr) or A1 (1 Trp, 12 Tyr), strongly suggesting that Tyr residues in both the N-terminal and C-terminal domain of A1 are involved in the binding process. Tyr phosphorescence emission was strongly quenched in the complexes of UP1 with various polynucleotides, and was attributed to triplet state energy transfer to nucleic acid bases located in the close vicinity of the fluorophore. These results are consistent with stacking of the tyrosine residues with the nucleic acid bases. While the UP1 Tyr phosphorescence lifetime is drastically shortened in the polynucleotide complex, no change of phosphorescence emission maximum, phosphorescence decay lifetime or ODMR transition frequencies were observed for the single Trp residue. The results of dynamic anisotropy measurements of the Trp fluorescence have been interpreted as indicative of significant internal flexibility in both UP1 and A1, suggesting a flexible linkage connecting the two sub-domains in UP1. Theoretical calculations based on amino acid sequence for chain flexibility and other secondary structural parameters are consistent with this observation, and suggest that flexible linkages between sub-domains may exist in other RNA binding proteins. While the dynamic anisotropy data are consistent with simultaneous binding of both the C-terminal and the N-terminal domains to the nucleic acid lattice, no evidence for simultaneous binding of both UP1 sub-domains was found.  相似文献   

14.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

15.
Summary Heterogeneous nuclear RNP protein A1, one of the major proteins in hnRNP particle (precursor for mRNA), is known to be post-translationally arginine-methylatedin vivo on residues 193, 205, 217 and 224 within the RGG box, the motif postulated to be an RNA binding domain. Possible effect of NG-arginine methyl-modification in the interaction of protein A1 to nucleic acid was investigated. The recombinant hnRNP protein A1 wasin vitro methylated by the purified nuclear protein/histone-specific protein methylase I (S-adenosylmethionine:protein-arginine N-methyltransferase) stoichiometrically and the relative binding affinity of the methylated and the unmethylated protein A1 to nucleic acid was compared: Differences in their binding properties to ssDNA-cellulose, pI values and trypsin sensitivities in the presence and absence of MS2-RNA all indicate that the binding property of hnRNP protein A1 to single-stranded nucleic acid has been significantly reduced subsequent to the methylation. These results suggest that posttranslational methyl group insertion to the arginine residue reduces protein-RNA interaction, perhaps due to interference of H-bonding between guanidino nitrogen arginine and phosphate RNA.Abbreviations hnRNP heterogeneous ribonucleoprotein particle - AdoMet S-adenosyl-L-methionine - AdoHcy S-adenosyl-L-homocysteine - MBP myelin basic protein - HMG high mobility group - ss single stranded  相似文献   

16.
hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere   总被引:5,自引:1,他引:4       下载免费PDF全文
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.  相似文献   

17.
The amino acid sequence of the large cyanogen bromide fragment (residues 11 to 127) derived from the NH2-terminal half of alpha-tropomyosin has been determined. This was achieved by automatic sequence analysis of the whole fragment as well as manual sequencing of fragments derived from tryptic digestion of the maleylated fragment and thermolytic, Myxobacter 495 alpha-lytic and Staphylococcus aureus protease digestion of the unmodified fragment. Methionine-containing overlap peptides have been isolated from tryptic digests of the maleylated protein as well as from S. aureus protease digests of the unmodified protein. Coupled with previously published information on the small cyanogen bromide fragments and methionine sequences of tropomyosin, these analyses have permitted the completion of the primary structure of the protein. The complete sequence differs by only 1 residue (Gln-24 instead of Glu-24) from that previously reported. Analysis of the sequence by several authors has permitted rational explanations for the stabilization of its coiled-coil structure, for the existence of its two chains in a nonstaggered arrangement, for a head-to-tail overlap of molecular ends of 8 to 9 residues, for the existence of 14 actin-binding sites on each tropomyosin molecule, and a suggestion for the site of binding of troponin-T.  相似文献   

18.
C Y Yang  W Y Huang  S Chirala  S J Wakil 《Biochemistry》1988,27(20):7773-7777
The complete amino acid sequence of thioesterase domain of chicken liver fatty acid synthase has been determined by sequencing peptides produced by trypsin, Staphylococcus aureus V8 protease, and cyanogen bromide cleavage. The thioesterase domain consists of 300 amino acid residues. All of the tryptic peptides of the thioesterase domain were isolated and sequenced, except the segment covered from position 109 to position 124. Peptides resulting from digestion by Staphylococcus aureus V8 protease and cyanogen bromide cleavage filled the missing part and overlapped the complete sequence of the entire thioesterase domain. The NH2 terminus of the thioesterase domain was determined to be lysine by sequencing the whole domain up to 20 residues while the COOH terminus was identified as serine through carboxyl peptidase Y cleavage. The active site of the thioesterase domain of chicken fatty acid synthase was suggested to be the serine on position 101 according to its homology with other serine-type esterases and proteases which have a common structure of -Gly-X-Ser-Y-Gly- with the variable amino acids X and Y disrupting the homology.  相似文献   

19.
Protein A1 (Mr approximately 32,000), a major glycine-rich protein of heterogeneous nuclear ribonucleoproteins (hnRNP), was purified to near homogeneity under nondenaturing conditions from HeLa cells. Limited proteolysis of the native protein yields a trypsin-resistant N-terminal nucleic acid-binding domain about 195 amino acids long which has a primary structure nearly identical to that of the 195-amino acid-long single-stranded DNA (ssDNA)-binding protein UP1 (Mr 22,162) from calf thymus (Williams, K.R., Stone, K. L., LoPresti, M.B., Merrill, B. M., and Planck, S.R. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5666-5670). 45 of the 61 glycine residues of A1 are present in the trypsin-sensitive C-terminal domain of the protein which contains no sequences homologous to UP1. Protein A2, another major glycine-rich core hnRNP protein from HeLa, has a domain structure analogous to A1 and appears to be related to ssDNA-binding proteins UP1-B from calf liver and HDP-1 from mouse myeloma in a way similar to the A1/UP1 relationship. In contrast to ssDNA-binding proteins, A1 binds preferentially to RNA over ssDNA and exhibits no helix-destabilizing activity.  相似文献   

20.
We have studied the primary structure of human cystatin As from epidermis, liver, spleen, and leukocytes. These molecules were indistinguishable on PAGE in the presence and absence of SDS, by fast protein liquid chromatography (FPLC) chromatofocusing on a Mono P column, and in amino acid composition. The NH2- and COOH-terminal amino acid sequences of human cystatin As from epidermis, liver, and spleen were identical with those of human leukocyte cystatin A previously reported except for the lack of the NH2-terminal methionine residue in human epidermal cystatin A. The peptides obtained upon digestion of four human cystatin As with Achromobacter protease I (AP) showed identical peptide maps on HPLC except for different retention times of the NH2-terminal peptides. Furthermore, the amino acid compositions of corresponding separated peptide quartets were identical. We also determined the complete amino acid sequence of human epidermal cystatin A by sequencing peptides obtained from AP digestion and cyanogen bromide (CNBr) cleavage. It consisted of 97 amino acid residues, and was identical with those of human cystatin As from liver, spleen, and leukocytes except for the lack of the NH2-terminal methionine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号