首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little TJ  Chadwick W  Watt K 《Parasitology》2008,135(3):303-308
Understanding genetic relationships amongst the life-history traits of parasites is crucial for testing hypotheses on the evolution of virulence. This study therefore examined variation between parasite isolates (the bacterium Pasteuria ramosa) from the crustacean Daphnia magna. From a single wild-caught infected host we obtained 2 P. ramosa isolates that differed substantially in the mortality they caused. Surprisingly, the isolate causing higher early mortality was, on average, less successful at establishing infections and had a slower growth rate within hosts. The observation that within-host replication rate was negatively correlated with mortality could violate a central assumption of the trade-off hypothesis for the evolution of virulence, but we discuss a number of caveats which caution against premature rejection of the trade-off hypothesis. We sought to test if the characteristics of these parasite isolates were constant across host genotypes in a second experiment that included 2 Daphnia host clones. The relative growth rates of the two parasite isolates did indeed depend on the host genotype (although the rank order did not change). We suggest that testing evolutionary hypotheses for virulence may require substantial sampling of both host and parasite genetic variation, and discuss how selection for virulence may change with the epidemiological state of natural populations and how this can promote genetic variation for virulence.  相似文献   

2.
Many viral, bacterial and protozoan parasites of invertebrates first propagate inside their host without releasing any transmission stages and then kill their host to release all transmission stages at once. Life history and the evolution of virulence of these obligately killing parasites are modelled, assuming that within-host growth is density dependent. We find that the parasite should kill the host when its per capita growth rate falls to the level of the host mortality rate. The parasite should kill its host later when the carrying capacity, K, is higher, but should kill it earlier when the parasite-independent host mortality increases or when the parasite has a higher birth rate. When K(t), for parasite growth, is not constant over the duration of an infection, but increases with time, the parasite should kill the host around the stage when the growth rate of the carrying capacity decelerates strongly. In case that K(t) relates to host body size, this deceleration in growth is around host maturation.  相似文献   

3.
For many parasites, especially those that obligately kill the host for transmission, host age is crucially important to determine success. Here, we have experimentally investigated this relationship with the microsporidian parasite, Nosema whitei, in its host, the Red Flour Beetle, Tribolium castaneum. We find that infection is only possible in young larvae and that spore load at the time of transmission (i.e., host death) correlates with host body size. The data suggested that an infection by N. whitei prolongs the life span of the infected larva and prevents them from pupation. Together, virulence to the host and success for the parasite is mainly determined by the host age at infection. The patterns are consistent with theoretical predictions for obligate killer parasites.  相似文献   

4.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

5.
The microsporidium Octosporea bayeri can infect its host, the planktonic crustacean Daphnia magna, vertically and horizontally. The two routes differ greatly in the way the parasite leaves the harbouring host (transmission) and in the way it enters a new, susceptible host (infection). Infections resulting from each route may thus vary in the way they affect host and parasite life-histories and, subsequently, host and parasite fitness. We conducted a life-table experiment to compare D. magna infected with O. bayeri either horizontally or vertically, using three different parasite isolates. Both the infection route and the parasite isolate had significant effects on host life-history. Hosts matured at different ages depending on the parasite isolate, and at a size that varied with infection route. The frequency of host sterility and the host's life-time reproductive success were affected by both the infection route and the parasite isolate. The infection route also affected parasite life-history. The production of parasite spores was much higher in vertically than in horizontally infected hosts. We found a trade-off between the production of spores (the parasite's horizontal fitness component) and the production of infected host offspring (the parasite's vertical fitness component). This study shows that hosts and parasites can react plastically to different routes of infection, suggesting that ecological factors that may influence the relative importance of horizontal and vertical transmission can shape the evolution of host and parasite life histories, and, consequently, the evolution of virulence.  相似文献   

6.
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host–parasite interactions impact the evolution of host–parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.  相似文献   

7.
We demonstrate a correlated response of the virulence and the mode of transmission of the microsporidian parasite Edhazardia aedis to selection on the age at pupation of its host, the mosquito Aedes aegypti. We selected three lines of mosquitoes each for early or late pupation and exposed the larvae after zero, two and four generations of selection to a low and a high concentration of the parasite’s spores. Before selection the parasites induced a similar level of mortality in the six lines; after four generations of selection mortality was higher in the mosquitoes selected for late pupation than in those selected for early pupation. Overall, parasite-induced mortality was positively correlated with the mean age at pupation of the matching uninfected line. When they died, mosquitoes selected for early pupation harboured mostly binucleate spores, which are responsible for vertical transmission. Mosquitoes selected for late pupation were more likely to harbour uninucleate spores, which are responsible for horizontal transmission. The parasite enhanced this tendency for horizontal transmission by prolonging the larval period in the lines selected for late pupation, but not in the ones selected for early pupation. These results suggest that the genetic basis of the mosquito’s age at pupation helps to determine the parasite’s mode of transmission: parasites in rapidly developing mosquitoes are benign and transmit vertically, while parasites in slowly developing mosquitoes are virulent and transmit horizontally. Thus, as the host’s life history evolves, the parasite’s performance changes, because the host’s evolution changes the environment in which the parasite develops.  相似文献   

8.
Evolutionary models predict that parasite virulence (parasite-induced host mortality) can evolve as a consequence of natural selection operating on between-host parasite transmission. Two major assumptions are that virulence and transmission are genetically related and that the relative virulence and transmission of parasite genotypes remain similar across host genotypes. We conducted a cross-infection experiment using monarch butterflies and their protozoan parasites from two populations in eastern and western North America. We tested each of 10 host family lines against each of 18 parasite genotypes and measured virulence (host life span) and parasite transmission potential (spore load). Consistent with virulence evolution theory, we found a positive relationship between virulence and transmission across parasite genotypes. However, the absolute values of virulence and transmission differed among host family lines, as did the rank order of parasite clones along the virulence-transmission relationship. Population-level analyses showed that parasites from western North America caused higher infection levels and virulence, but there was no evidence of local adaptation of parasites on sympatric hosts. Collectively, our results suggest that host genotypes can affect the strength and direction of selection on virulence in natural populations, and that predicting virulence evolution may require building genotype-specific interactions into simpler trade-off models.  相似文献   

9.
By combining a field study with controlled laboratory experimentation, we examined how infection traits of the sterilizing bacterium, Pasteuria ramosa, changed over the course of a growing season in a natural population of its crustacean host Daphnia magna. The number of parasite transmission spores per infected host increased ten‐fold over the course of the season, concomitant with a decline in the density of infected hosts. Plausible explanations for this variation include changes in environmental conditions, changes in host quality, or that parasite migration or natural selection caused a genetic change in the parasite population. We sought to distinguish some of these possibilities in a laboratory experiment. Thus, we preserved field‐collected parasite spores throughout the season, and later exposed a set of hosts to a fixed dose of these spores under controlled laboratory conditions. Parasites collected late in the season were more infectious and grew more rapidly than parasites collected early in the season. This result is compatible with the hypothesis that the observed increase in infectivity in the field was due to genetic change, i.e. evolution in the P. ramosa population.  相似文献   

10.
Competition between parasites within a host can influence the evolution of parasite virulence and host resistance, but few studies examine the effects of unrelated parasites with conflicting transmission strategies infecting the same host. Vertically transmitted (VT) parasites, transmitted from mother to offspring, are in conflict with virulent, horizontally transmitted (HT) parasites, because healthy hosts are necessary to maximize VT parasite fitness. Resolution of the conflict between these parasites should lead to the evolution of one of two strategies: avoidance, or sabotage of HT parasite virulence by the VT parasite. We investigated two co-infecting parasites in the amphipod host, Gammarus roeseli: VT microsporidia have little effect on host fitness, but acanthocephala modify host behaviour, increasing the probability that the amphipod is predated by the acanthocephalan's definitive host. We found evidence for sabotage: the behavioural manipulation induced by the Acanthocephala Polymorphus minutus was weaker in hosts also infected by the microsporidia Dictyocoela sp. (roeselum) compared to hosts infected by P. minutus alone. Such conflicts may explain a significant portion of the variation generally observed in behavioural measures, and since VT parasites are ubiquitous in invertebrates, often passing undetected, conflict via transmission may be of great importance in the study of host-parasite relationships.  相似文献   

11.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

12.
Abstract Understanding genetic specificity in factors determining the outcome of host-parasite interactions is especially important as it contributes to parasite epidemiology, virulence, and maintenance of genetic variation. Such specificity, however, is still generally poorly understood. We examined genetic specificity in interactions among coinfecting parasites. In natural populations, individual hosts are often simultaneously infected by multiple parasite species and genotypes that interact. Such interactions could maintain genetic variation in parasite populations if they are genetically specific so that the relative fitness of parasite genotypes varies across host individuals depending on (1) the presence/absence of coinfections and/or (2) the genetic composition of the coinfecting parasite community. We tested these predictions using clones of fish eye flukes Diplostomum pseudospathaceum and Diplostomum gasterostei. We found that interactions among parasites had a strong genetic basis and that this modified genetic variation in infection success of D. pseudospathaceum between single and multiple infections as well as across multiply infected host individuals depending on the genetic identity of the coinfecting D. gasterostei. The relative magnitude of these effects, however, depended on the exposure dose, suggesting that ecological factors can modify genetic interactions between parasites.  相似文献   

13.
Many parasites evolve to become virulent rather than benign mutualists. One of the major theoretical models of parasite virulence postulates that this is because rapid within-host replication rates are necessary for successful transmission (parasite fitness) and that virulence (damage to the host) is an unavoidable consequence of this rapid replication. Two fundamental assumptions underlying this so-called evolutionary trade-off model have rarely been tested empirically: (1) that higher replication rates lead to higher levels of virulence; and (2) that higher replication rates lead to higher transmission. Both of these relationships must have a genetic basis for this evolutionary hypothesis to be relevant. These assumptions were tested in the rodent malaria parasite, Plasmodium chabaudi, by examining genetic relationships between virulence and transmission traits across a population of eight parasite clones isolated from the wild. Each clone was injected into groups of inbred mice in a controlled laboratory environment, and replication rate (measured by maximum asexual parasitemia), virulence (measured by live-weight loss and degree of anemia in the mouse), and transmission (measured by density of sexual forms, gametocytes, in the blood and proportion of mosquitoes infected after taking a blood-meal from the mouse) were assessed. It was found that clones differed widely in these traits and these clone differences were repeatable over successive blood passages. Virulence traits were strongly phenotypically and genetically (i.e., across clones) correlated to maximum parasitemia thus supporting the first assumption that rapid replication causes higher virulence. Transmission traits were also positively phenotypically and genetically correlated to parasitemia, which supports the second assumption that rapid replication leads to higher transmission. Thus, two assumptions of the parasite-centered trade-off model of the evolution of virulence were shown to be justified in malaria parasites.  相似文献   

14.
The adaptive trade-off theory for the evolution and maintenance of parasite virulence requires that virulence be genetically correlated with other fitness characteristics of the parasite. Many theoretical models rely on a positive correlation between virulence and transmissibility. They assume that high parasite replication rates are associated with a high probability of transmission (and, hence, increased parasite fitness), but also with high levels of damage to the host (high virulence). Schistosomes are macroparasites with an indirect life cycle involving a mammalian and a molluscan host. Here we demonstrate, through the development of five substrains, a genetic basis for schistosome virulence. We used these substrains further in order to investigate the presence of parasite fitness traits that were genetically correlated with virulence. High virulence in the (mouse) definitive host was, as predicted, positively correlated with parasite replication. In contrast, in the (snail) intermediate host high virulence was associated with low parasite replication rates. Variation in infectivity to and parasite replication in the definitive host was suggested as a compensating mechanism for the maintenance of virulence in the snail host. This is the first report of a trade-off in parasite reproductive success across hosts in an indirectly transmitted macroparasite.  相似文献   

15.
Parasite virulence is a leading theme in evolutionary biology. Modeling the course of virulence evolution holds the promise of providing practical insights into the management of infectious diseases and the implementation of vaccination strategies. A key element of virulence modeling is a tradeoff between parasite transmission rate and host lifespan. This assumption is crucial for predicting the level of optimal virulence. Here, I test this assumption using the water flea Daphnia magna and its castrating and obligate‐killing bacterium Pasteuria ramosa. I found that the virulence–transmission relationship holds under diverse epidemiological and ecological conditions. In particular, parasite genotype, absolute and relative parasite dose, and within‐host competition in multiple infections did not significantly affect the observed trend. Interestingly, the relationship between virulence and parasite transmission in this system is best explained by a model that includes a cubic term. Under this relationship, parasite transmission initially peaks and saturates at an intermediate level of virulence, but then it further increases as virulence decreases, surpassing the previous peak. My findings also highlight the problem of using parasite‐induced host mortality as a “one‐size‐fits‐all” measure of virulence for horizontally transmitted parasites, without considering the onset and duration of parasite transmission as well as other equally virulent effects of parasites (e.g., host castration). Therefore, mathematical models may be required to predict whether these particular characteristics of horizontally transmitted parasites can direct virulence evolution into directions not envisaged by existing models.  相似文献   

16.
The maintenance of genetic variation for infection-related traits is often attributed to coevolution between hosts and parasites, but it can also be maintained by environmental variation if the relative fitness of different genotypes changes with environmental variation. To gain insight into how infection-related traits are sensitive to environmental variation, we exposed a single host genotype of the freshwater crustacean Daphnia magna to four parasite isolates (which we assume to represent different genotypes) of its naturally co-occurring parasite Pasteuria ramosa at 15, 20 and 25 degrees C. We found that the cost to the host of becoming infected varied with temperature, but the magnitude of this cost did not depend on the parasite isolate. Temperature influenced parasite fitness traits; we found parasite genotype-by-environment (G x E) interactions for parasite transmission stage production, suggesting the potential for temperature variation to maintain genetic variation in this trait. Finally, we tested for temperature-dependent relationships between host and parasite fitness traits that form a key component of models of virulence evolution, and we found them to be stable across temperatures.  相似文献   

17.
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.  相似文献   

18.
Microparasite virulence (the potential to cause harm in the host) is thought to be regulated by a direct trade-off with pathogen transmission potential, but it is unclear whether similar trade-offs occur in macroparasites (helminths). In this analysis, the transmission potentials of 5 nematode species (order Strongylida), known to differ in their virulence, were estimated using an index based on egg production and larval survivability. Virulence estimates were based on the minimum number of worms that cause host death. In nematode species where mature adults cause pathology (trichonematidic development), there is a direct relationship between virulence and transmission, suggesting that high virulence is related to parasite fitness in these worms. However, in nematodes where the juvenile stages produce pathology during migration and development (strongylidic development), virulence is not correlated with transmission. These data suggest that trade-offs between transmission and virulence in nematode parasites are not analogous for all species and may depend on the developmental strategy and mechanism of pathogenicity of the parasites.  相似文献   

19.
In this paper we develop and analyze several populaion-dynamic models of an environmentally transmitted symbiotic parasite infecting an isolated population of susceptible hosts. In our most basic model infection acts only to decrease the average lifetime of the infected host, parasites are only transmitted to uninfected hosts, there is no recovery from infection, and the rate of parasite transmission is an increasing function of the level of parasite virulence. It is shown that invasion of the parasite-free equilibrium cannot occur for virulence levels that are either too high or too low. We then incorporate a number of modifications to the model, among them the possibility that host fertility is reduced by infection, and that transmission rate depends additionally on susceptible host density. It is shown that the essential nature of the conditions for invasion are preserved. Thus, natural selection for intermediate virulence is a generic property of a broad class of population models.  相似文献   

20.
Parasitism is a common cause of host mortality, but little is known about the ecological factors affecting parasite virulence (the rate of mortality among infected hosts). We reviewed 117 field estimates of parasite-induced nestling mortality in birds, showing that there was significant consistency in mortality among host and parasite taxa. Virulence increased towards the tropics in analyses of both species-specific data and phylogenetic analyses. We found evidence of greater parasite prevalence being associated with reduced virulence. Furthermore, bird species breeding in open nest sites suffered from greater parasite-induced mortality than hole-nesting species. By contrast, parasite specialization and generation time of parasites relative to that of hosts explained little variation in virulence. Likewise, there were little or no significant effects of host genetic variability, host sociality, host migration, host insular distribution or host survival on parasite virulence. These findings suggest that parasite-induced nestling mortality in birds is mainly determined by geographical location and to a smaller extent nest site and prevalence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号