首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testicular Sertoli cells phagocytose apoptotic spermatogenic cells in a manner depending on the membrane phospholipid phosphatidylserine (PS) expressed at the surface of the latter cell type. Our previous studies have indicated that class B scavenger receptor type I (SR-BI) is responsible for the PS-mediated phagocytosis by Sertoli cells. We examined here whether SR-BI binds directly to PS. A cell line acquired the ability to bind to PS-exposing apoptotic cells and to incorporate PS-containing liposomes when it was forced to express SR-BI. Furthermore, the extracellular domain of rat SR-BI fused with human Fc (SRBIecd-Fc) bound to PS with a dissociation equilibrium constant of 2.4 x 10(-7) m in a cell-free solid-phase assay, whereas other phospholipids including phosphatidylethanolamine, phosphatidylinositol, and phosphatidylcholine were poor binding targets. The binding activity was enhanced when CaCl(2) was included in the assay or when SRBIecd-Fc was pre-treated with N-glycanase. A portion of the extracellular domain spanning amino acid positions 33 and 191 (numbered with respect to the amino terminus) fused with Fc (SRBI33-191-Fc) showed activity and phospholipid specificity equivalent to those of SRBIecd-Fc. Finally, SRBI33-191-Fc bound to the surface of apoptotic cells with externalized PS, and the injection of SRBI33-191-Fc into the seminiferous tubules of live mice increased the number of apoptotic spermatogenic cells. These results allowed us to conclude that SR-BI is a phagocytosis-inducing PS receptor of Sertoli cells.  相似文献   

2.
Class B scavenger receptor type I (SR-BI) is a multiligand membrane protein expressed in a variety of cell types. This receptor is responsible for the incorporation of lipids from high density lipoprotein (HDL) by steroidogenic cells, as well as for the phosphatidylserine (PS)-mediated phagocytosis of apoptotic cells by some phagocytic cell types, such as testicular Sertoli cells. Although SR-BI directly binds to PS present on the surface of apoptotic cells, as to whether SR-BI transmits signals to induce engulfment has not been clear. In the present study, we examined this issue using a monoclonal antibody that neutralizes SR-BI activity and a chemical known to be an inhibitor of the SR-BI-mediated incorporation of HDL lipids. The chemical compound inhibited the incorporation of HDL lipids and PS-containing liposomes by an SR-BI-expressing culture cell line, with no effect on the binding of these targets. Similarly, the phagocytosis of PS-exposing apoptotic cells by primary cultured rat Sertoli cells was inhibited in the presence of either reagent, not at the recognition but at the engulfment step. The addition of apoptotic cells or PS-containing liposomes caused a temporal increment of the phosphorylation of all three mitogen-activated protein kinases, p38, extracellular-signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK), in Sertoli cells. The increase of phosphorylated p38 and ERK, but not of phosphorylated JNK, was cancelled in the presence of the monoclonal antibody. Furthermore, the level of Sertoli cell phagocytosis of PS-exposing apoptotic cells, as well as that of PS-containing liposomes, was reduced only when the actions of p38 and ERK were simultaneously repressed. In conclusion, these results indicate that SR-BI, when it binds to PS, transmits signals to activate the mitogen-activated protein kinase pathway, which leads to the induction of the engulfment of PS-exposing apoptotic cells by phagocytic cells.  相似文献   

3.
Sertoli cells, a somatic cell type present within the seminiferous tubules of testes, are responsible for the phagocytic elimination of apoptotic spermatogenic cells. We here established an in vivo assay system that enables us to quantitatively analyze Sertoli cell phagocytosis of apoptotic cells in testes of live mice. Apoptotic cells were injected into the seminiferous tubules of spermatogenic cell-depleted mice, and the occurrence of phagocytosis by Sertoli cells was examined by histochemically analyzing testis sections or dispersed testicular cells. We reproducibly observed similar levels of phagocytosis in either examination, and the ratio of Sertoli cells that engulfed injected apoptotic cells was almost the same between the two examinations. These results indicated that a quantitative in vivo assay system was established using the seminiferous tubules of live mice as 'test tubes.' We then determined the requirements for Sertoli cell phagocytosis of apoptotic cells using this assay. For this purpose, apoptotic cells were injected together with various phagocytosis inhibitors, and the extent of phagocytosis by Sertoli cells was determined. The results revealed that Sertoli cells phagocytose apoptotic cells in a manner dependent on class B scavenger receptor type I (SR-BI) of Sertoli cells and phosphatidylserine exposed at the surface of target cells, as previously observed in vitro using primary cultures of dispersed rat testicular cells. Furthermore, the amount of SR-BI in Sertoli cells increased after injection of apoptotic cells into the seminiferous tubules, suggesting a positive feedback regulation of the expression of this phagocytosis receptor.  相似文献   

4.
Many differentiating spermatogenic cells die by apoptosis during the process of mammalian spermatogenesis. However, very few apoptotic spermatogenic cells are detected by histological examination of the testis, probably due to the rapid elimination of dying cells by phagocytosis. Previous in vitro studies showed that Sertoli cells selectively phagocytose dying spermatogenic cells by recognizing the membrane phospholipid phosphatidylserine (PS), which is exposed to the surface of spermatogenic cells during apoptosis. We examined here whether PS-mediated phagocytosis of apoptotic spermatogenic cells occurs in vivo. For this purpose, the PS-binding protein annexin V was microinjected into the seminiferous tubules of normal live mice, and their testes were examined. The injection of annexin V caused no histological changes in the testis, but significantly increased the number of apoptotic spermatogenic cells as assessed by the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay. The number of Sertoli cells did not change in the annexin V-injected testes, and annexin V itself did not induce apoptosis in primary cultured spermatogenic cells. These results indicate that annexin V inhibited the phagocytic clearance of apoptotic spermatogenic cells and suggest that PS-mediated phagocytosis of those cells occurs in vivo. Furthermore, the injection of annexin V into the seminiferous tubules brought about a significant reduction in the number of spermatogenic cells and epididymal sperm in anticancer drug-treated mice. This suggests that the elimination of apoptotic spermatogenic cells is required for the production of sperm.  相似文献   

5.
One of the key features associated with programmed cell death in many tissues is the phagocytosis of apoptotic bodies by macrophages. Removal of apoptotic cells occurs before their lysis, indicating that these cells, during the development of apoptosis, express specific surface changes recognized by macrophages. We have compared the mechanisms by which four different macrophage populations recognize apoptotic cells. Murine macrophages elicited into the peritoneal cavity with either of two different phlogistic agents were able to phagocytose apoptotic cells. This phagocytosis was inhibited by phosphatidylserine (PS), regardless of the species (human or murine) or type (lymphocyte or neutrophil) of the apoptotic cell. In contrast, the murine bone marrow macrophage, like the human monocyte-derived macrophage, utilized the vitronectin receptor, an alpha v beta 3 integrin, for the removal of apoptotic cells, regardless of their species or type. That human macrophages are capable, under some circumstances, of recognizing PS on apoptotic cells was suggested by the observation that PS liposomes inhibited phagocytosis by phorbol ester-treated THP-1 cells. These results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophages studied.  相似文献   

6.
Class B scavenger receptor type I (SR-BI), a multiligand membrane protein, exists in various organs and cell types. In the testis, SR-BI is expressed in two somatic cell types: Leydig cells and Sertoli cells. Unlike interstitially localized Leydig cells, Sertoli cells present within the seminiferous tubules keep contact with spermatogenic cells and form the tight junction to divide the seminiferous epithelium into the basal and adluminal compartments. In this study, the expression and function of SR-BI in rat Sertoli cells were examined with respect to dependency on the spermatogenic cycle, the plasma membrane polarity, and the pituitary hormone follicle-stimulating hormone (FSH). When the expression of SR-BI was histochemically examined with testis sections, both protein and mRNA were already present in Sertoli cells during the first-round spermatogenesis and continued to be detectable thereafter. The level of SR-BI mRNA expression in Sertoli cells was lower at spermatogenic stages I-VI than at other stages. SR-BI was present and functional (in mediating cellular incorporation of lipids of high density lipoprotein) at both the apical and basolateral surfaces of polarized Sertoli cells. Finally, SR-BI expression at both the protein and mRNA levels was stimulated by FSH in cultured Sertoli cells. These results indicate that SR-BI functions on both the apical and basolateral plasma membranes of Sertoli cells, and that SR-BI expression in Sertoli cells changes during the spermatogenic cycle and is stimulated, at least in cultures, by FSH.  相似文献   

7.
When cells undergo apoptosis, or programmed cell death, they expose phosphatidylserine (PS) on their surface. Macrophages that efficiently phagocytose apoptotic cells also express PS on their surface, although at a lower level. The PS exposed on both cells is required for phagocytosis, because uptake is inhibited by masking PS on either cell with annexin V, a PS-binding protein. The inhibition is not additive, suggesting that the exposed PS molecules on the two cells participate in a common process. We asked whether this dual requirement reflects bridging of the target cell and macrophage by bivalent, PS-binding annexins. Monoclonal antibodies (mAbs) against annexins I or II stained a variety of live phagocytes. Apoptotic Jurkat T lymphocytes and human peripheral T lymphocytes, but not apoptotic thymocytes, were stained by anti-annexin I but not II. Phagocytosis of apoptotic targets was inhibited by mAbs to annexins I or II, or by pretreatment of macrophages with the same mAbs. Pretreatment of apoptotic thymocytes had no effect, whereas pretreating Jurkat cells with anti-annexin I or removing annexin I with EGTA was inhibitory. Annexin bridging is vectorial, because annexin is bound to PS molecules on targets but not on macrophages, suggesting annexins serve as both ligand and receptor in promoting phagocytosis.  相似文献   

8.
During normal tissue remodeling, macrophages remove unwanted cells, including those that have undergone programmed cell death, or apoptosis. This widespread process extends to the deletion of thymocytes (negative selection), in which cells expressing inappropriate Ag receptors undergo apoptosis, and are phagocytosed by thymic macrophages. Although phagocytosis of effete leukocytes by macrophages has been known since the time of Metchnikoff, only recently has it been recognized that apoptosis leads to surface changes that allow recognition and removal of these cells before they are lysed. Our data suggest that macrophages specifically recognize phosphatidylserine that is exposed on the surface of lymphocytes during the development of apoptosis. Macrophage phagocytosis of apoptotic lymphocytes was inhibited, in a dose-dependent manner, by liposomes containing phosphatidyl-L-serine, but not by liposomes containing other anionic phospholipids, including phosphatidyl-D-serine. Phagocytosis of apoptotic lymphocytes was also inhibited by the L isoforms of compounds structurally related to phosphatidylserine, including glycerophosphorylserine and phosphoserine. The membranes of apoptotic lymphocytes bound increased amounts of merocyanine 540 dye relative to those of normal cells, indicating that their membrane lipids were more loosely packed, consistent with a loss of membrane phospholipid asymmetry. Apoptotic lymphocytes were shown to express phosphatidylserine (PS) externally, because PS on their surfaces was accessible to derivatization by fluorescamine, and because apoptotic cells expressed procoagulant activity. These observations suggest that apoptotic lymphocytes lose membrane phospholipid asymmetry and expose phosphatidylserine on the outer leaflet of the plasma membrane. Macrophages then phagocytose apoptotic lymphocytes after specific recognition of the exposed PS.  相似文献   

9.
Dying cells are selectively eliminated from the organism by phagocytosis. Previous studies suggested the existence of some other phagocytosis marker(s) that function together with phosphatidylserine, the best-characterized phagocytosis marker. We obtained here a monoclonal antibody named PH2 that inhibited macrophage phagocytosis of late apoptotic or necrotic cells, but not of early apoptotic cells. On the other hand, phagocytosis of cells at any time during the process of apoptosis was inhibitable by phosphatidylserine-containing liposomes. Inhibition occurred even when target cells were preincubated with PH2 and separated from unbound antibodies. Moreover, PH2 bound to apoptotic cells at late stages more efficiently than to those at early stages, and it did not bind to normal cells unless their plasma membrane was permeabilized. These results suggest that the putative PH2 antigen is a novel phagocytosis marker that translocates to the cell surface at late stages of apoptosis, resulting in maximal recognition and engulfment by macrophages.  相似文献   

10.
The mechanism of phagocytic elimination of dying cells in Drosophila is poorly understood. This study was undertaken to examine the recognition and engulfment of apoptotic cells by Drosophila hemocytes/macrophages in vitro and in vivo. In the in vitro analysis, l(2)mbn cells (a cell line established from larval hemocytes of a tumorous Drosophila mutant) were used as phagocytes. When l(2)mbn cells were treated with the molting hormone 20-hydroxyecdysone, the cells acquired the ability to phagocytose apoptotic S2 cells, another Drosophila cell line. S2 cells undergoing cycloheximide-induced apoptosis exposed phosphatidylserine on their surface, but their engulfment by l(2)mbn cells did not seem to be mediated by phosphatidylserine. The level of Croquemort, a candidate phagocytosis receptor of Drosophila hemocytes/macrophages, increased in l(2)mbn cells after treatment with 20-hydroxyecdysone, whereas that of Draper, another candidate phagocytosis receptor, remained unchanged. However, apoptotic cell phagocytosis was reduced when the expression of Draper, but not of Croquemort, was inhibited by RNA interference in hormone-treated l(2)mbn cells. We next examined whether Draper is responsible for the phagocytosis of apoptotic cells in vivo using an assay for engulfment based on assessing DNA degradation of apoptotic cells in dICAD mutant embryos (which only occurred after ingestion by the phagocytes). RNA interference-mediated decrease in the level of Draper in embryos of mutant flies was accompanied by a decrease in the number of cells containing fragmented DNA. Furthermore, histochemical analyses of dispersed embryonic cells revealed that the level of phagocytosis of apoptotic cells by hemocytes/macrophages was reduced when Draper expression was inhibited. These results indicate that Drosophila hemocytes/macrophages execute Draper-mediated phagocytosis to eliminate apoptotic cells.  相似文献   

11.
Phagocytosis and autophagy are typically dedicated to degradation of substrates of extrinsic and intrinsic origins respectively. Although overlaps between phagocytosis and autophagy were reported, the use of autophagy for ingested substrate degradation by nonprofessional phagocytes has not been described. Blood-separated tissues use their tissue-specific nonprofessional phagocytes for homeostatic phagocytosis. In the testis, Sertoli cells phagocytose spermatid residual bodies produced during germ cell differentiation. In the retina, pigmented epithelium phagocytoses shed photoreceptor tips produced during photoreceptor renewal. Spermatid residual bodies and shed photoreceptor tips are phosphatidylserine-exposing substrates. Activation of the tyrosine kinase receptor MERTK, which is implicated in phagocytosis of phosphatidylserine-exposing substrates, is a common feature of Sertoli and retinal pigmented epithelial cell phagocytosis. The major aim of our study was to investigate to what extent phagocytosis by Sertoli cells may be tissue specific. We analyzed in Sertoli cell cultures that were exposed to either spermatid residual bodies (legitimate substrates) or retina photoreceptor outer segments (illegitimate substrates) the course of the main phagocytosis stages. We show that whereas substrate binding and ingestion stages occur similarly for legitimate or illegitimate substrates, the degradation of illegitimate but not of legitimate substrates triggers autophagy as evidenced by the formation of double-membrane wrapping, MAP1LC3A-II/LC3-II clustering, SQSTM1/p62 degradation, and by marked changes in ATG5, ATG9 and BECN1/Beclin 1 protein expression profiles. The recruitment by nonprofessional phagocytes of autophagy for the degradation of ingested cell-derived substrates is a novel feature that may be of major importance for fundamentals of both apoptotic substrate clearance and tissue homeostasis.  相似文献   

12.
The efficient phagocytosis of apoptotic cells by macrophages reduces the potential for an inflammatory response by ensuring that the dying cells are cleared before their intracellular contents are released. Early apoptotic cells are targeted for phagocytosis through the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane. In this report, we show that the oxidant H(2)O(2) inhibits phagocytosis of apoptotic cells even though the cells express functional PS on their surface. Thus, B lymphoma cells induced to undergo apoptosis by the chemotherapy drug etoposide are efficiently phagocytosed by macrophages in a process that is mediated by PS (inhibitable by PS liposomes). Exposure of the apoptotic cells to H(2)O(2) inhibits phagocytosis even though the cells still express functional PS on their surface. In addition, Jurkat cells and thymocytes induced to undergo apoptosis by H(2)O(2) alone are poorly phagocytosed. Inhibition of phagocytosis by H(2)O(2) cannot be attributed to oxidative inactivation or redistribution of PS on the cell surface. The results indicate that PS externalization is necessary but is not sufficient to target apoptotic cells for phagocytosis. Another phagocytosis recognition factor must therefore exist to facilitate uptake of apoptotic cells, and this factor is sensitive to modification by H(2)O(2).  相似文献   

13.
Phosphatidylserine (PS) on apoptotic cells promotes their uptake and induces anti-inflammatory responses in phagocytes, including TGF-beta release. Little is known regarding the effects of PS on adaptive immune responses. We therefore investigated the effects of PS-containing liposomes on immune responses in mice in vivo. PS liposomes specifically inhibited responses to Ags as determined by decreased draining lymph node tissue mass, with reduced numbers of total leukocytes and Ag-specific CD4(+) T cells. There was also a decrease in formation and size of germinal centers in spleen and lymph nodes, accompanied by decreased levels of Ag-specific IgG in blood. Many of these effects were mimicked by an agonistic Ab-specific for the PS receptor. TGF-beta appears to play a critical role in this inhibition, as the inhibitory effects of PS were reversed by in vivo administration of anti-TGF-beta Ab. PS-containing liposomes did not appear to directly inhibit dendritic cell maturation in vitro in response to a variety of stimuli, nor did it prevent their migration to regional lymph nodes in vivo, suggesting that the inhibitory effects may have resulted from complicated interactions between tissue cells and dendritic cells, subsequently inhibiting their ability to productively activate T lymphocytes.  相似文献   

14.
Scavenger receptor class B type I (SR-BI) contributes to HDL-mediated cellular cholesterol efflux and is a phagocytosis-inducing phospholipid phosphatidylserine receptor in rat Sertoli cells, whereas the spliced variant of the SR-B gene, SR-BII, is implicated in the efflux of free cholesterol in macrophages. This study aimed to assess whether spontaneous autoimmune orchitis (AIO), which causes impaired clearance of apoptotic germ cells and spermatogenic arrest, involves SR-BI, SR-BII, and/or cholesterol. The levels measured during development and the annual reproductive cycle in normal mink were compared with those in mink with spontaneous AIO. Time periods with lowest tubular esterified cholesterol (EC) levels showed maximal SR-BI and SR-BII levels, and the periods when one or the other SR-BI isoform predominated showed increased EC levels and spermatogenic arrest in normal mink seminiferous tubules. In tubules with AIO, the predominance of only one or the other SR-BI isoform was the reverse of that measured in normal tubules, and it was associated with an increase in EC levels but not with apoptosis levels. SR-BI and SR-BII levels were not correlated with serum testosterone levels. SR-BI mainly localized to the Leydig cell, germ cell, and Sertoli cell surface, where its distribution was stage-specific. SR-BII was principally intracellular. Tubules from testes with AIO showed a deregulation of cholesterol homeostasis and SR-BI expression but relatively unchanged apoptosis levels. These results suggest that the expression of both SR-BI isoforms is required for the maintenance of low EC levels and that the predominance of only one isoform is associated with the accumulation of EC but not with apoptosis in the tubules.  相似文献   

15.
Apoptotic-cell clearance is dependent on several macrophage surface molecules, including CD14. Phosphatidylserine (PS) becomes externalised during apoptosis and participates in the clearance process through its ability to bind to a novel receptor, PS-R. CD14 has the proven ability to bind phospholipids and may function as an alternative receptor for the externalised PS of apoptotic cells. Here we demonstrate that CD14 does not function preferentially as a PS receptor in apoptotic-cell clearance. Compared with phosphatidylcholine and phosphatidylethanolamine, PS was the least active phospholipid binding to human monocyte-derived macrophages and showed no specificity for soluble or membrane-anchored CD14. Significantly, PS-containing liposomes failed to inhibit CD14-dependent uptake of apoptotic cells by macrophages. PS exposure was, however, found to be insufficient for either CD14-dependent or CD14-independent apoptotic-cell uptake by phagocytes. The additional features that enable apoptotic-cell clearance are derived from mechanisms that can be divorced temporally from those responsible for the morphological features of apoptosis.  相似文献   

16.
Phosphatidylserine regulates the maturation of human dendritic cells   总被引:2,自引:0,他引:2  
Phosphatidylserine (PS), which is exposed on the surface of apoptotic cells, has been implicated in immune regulation. However, the effects of PS on the maturation and function of dendritic cells (DCs), which play a central role in both immune activation and regulation, have not been described. Large unilamellar liposomes containing PS or phosphatidylcholine were used to model the plasma membrane phospholipid composition of apoptotic and live cells, respectively. PS liposomes inhibited the up-regulation of HLA-ABC, HLA-DR, CD80, CD86, CD40, and CD83, as well as the production of IL-12p70 by human DCs in response to LPS. PS did not affect DC viability directly but predisposed DCs to apoptosis in response to LPS. DCs exposed to PS had diminished capacity to stimulate allogeneic T cell proliferation and to activate IFN-gamma-producing CD4(+) T cells. Exogenous IL-12 restored IFN-gamma production by CD4(+) T cells. Furthermore, activated CTLs proliferated poorly to cognate Ag presented by DCs exposed to PS. Our findings suggest that PS exposure provides a sufficient signal to inhibit DC maturation and to modulate adaptive immune responses.  相似文献   

17.
In the early stages of apoptosis, phosphatidylserine (PS) is translocated from the inner side of the plasma membrane to the outer layer, which allows phagocytes to recognize and engulf the apoptotic cells. In this study we have analyzed the cell surface exposure of phosphatidylethanolamine (PE) in apoptotic CTLL-2 cells, a cytotoxic T cell line, using a tetracyclic polypeptide of 19 amino acids (Ro09-0198) which specifically recognizes the structure of PE and forms a tight equimolar complex with the phospholipid. Fluorescence microscopic analysis showed that the peptide, conjugated with fluorescence-labeled streptavidin (FL-SA-Ro), bound effectively to the cell surface of cells undergoing apoptosis in response to withdrawal of interleukin-2 from the culture media, but not to nonapoptotic cells. The binding of FL-SA-Ro to apoptotic cells was not uniform and the intense staining was observed on surface blebs of apoptotic cells. The FL-SA-Ro binding was inhibited specifically by liposomes containing PE, suggesting that PE is mainly exposed on the surface blebs of apoptotic cells. The specific binding of FL-SA-Ro to the apoptotic cells was also confirmed using a fluorescence-activated cell sorter and the time-dependent cell surface exposure of PE correlated well with the exposure of PS, as detected by the binding of annexin V. This study provides the first direct evidence that PE as well as PS is exposed on the cell surface during the early stages of apoptosis, resulting in the total loss of asymmetric distribution of aminophospholipids in the plasma membrane bilayer.  相似文献   

18.
Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.  相似文献   

19.
We showed previously that protein kinase C (PKC) is required for phagocytosis of apoptotic leukocytes by murine alveolar (AM?) and peritoneal macrophages (PM?) and that such phagocytosis is markedly lower in AM? compared with PM?. In this study, we examined the roles of individual PKC isoforms in phagocytosis of apoptotic thymocytes by these two M? populations. By immunoblotting, AM? expressed equivalent PKC eta but lower amounts of other isoforms (alpha, betaI, betaII, delta, epsilon, mu, and zeta), with the greatest difference in betaII expression. A requirement for PKC betaII for phagocytosis was demonstrated collectively by phorbol 12-myristate 13-acetate-induced depletion of PKC betaII, by dose-response to PKC inhibitor Ro-32-0432, and by use of PKC betaII myristoylated peptide as a blocker. Exposure of PM? to phosphatidylserine (PS) liposomes specifically induced translocation of PKC betaII and other isoforms to membranes and cytoskeleton. Both AM? and PM? expressed functional PS receptor, blockade of which inhibited PKC betaII translocation. Our results indicate that murine tissue M? require PKC betaII for phagocytosis of apoptotic cells, which differs from the PKC isoform requirement previously described in M? phagocytosis of other particles, and imply that a crucial action of the PS receptor in this process is PKC betaII activation.  相似文献   

20.
Early apoptotic Jurkat T cells undergo capping of CD43, and its polylactosaminyl saccharide chains serve as ligands for phagocytosis by macrophages. This suggests the presence of a polylactosaminoglycan-binding receptor on macrophages. Here we show that this receptor is nucleolin, a multifunctional shuttling protein present in nucleus, cytoplasm, and on the surface of some types of cells. Nucleolin was detected at the surface of macrophages, and anti-nucleolin antibody inhibited the binding of the early apoptotic cells to macrophages. Nucleolin-transfected HEK293 cells expressed nucleolin on the cell surface and bound the early apoptotic cells but not phosphatidylserine-exposing late apoptotic cells. This binding was inhibited by anti-nucleolin antibody, by polylactosamine-containing oligosaccharides, and by anti-CD43 antibody. Deletion of the antibody binding region of nucleolin resulted in loss of the apoptotic cell-binding ability. Moreover, truncated recombinant nucleolin in solution containing this region blocked the apoptotic cell binding to macrophages, and the blocking effect was cancelled by the oligosaccharides. These results indicate that nucleolin is a macrophage receptor for apoptotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号