首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.  相似文献   

2.
Nubbins of the coral Acropora aspera were artificially bleached and nitrogen fixation (acetylene reduction) rates were measured on the developing epilithic communities. Seasonal comparisons were made between corals that died in summer of heat stress and corals that died in winter from natural cold stress. Rates of acetylene reduction from artificially bleached corals peaked at 26.66 nmol cm−2 h−1 2 weeks after summer mortality, while rates from natural winter mortality peaked at 18.07 nmol cm−2 h−1 12 days after coral death. Comparative rates of acetylene reduction taken from live corals and coral rubble ranged between 0.56 and 1.16 nmol cm−2 h−1, and 0.15 and 12.77 nmol cm−2 h−1, respectively. N2-fixation rates from dead corals were up to 30 times greater than those measured on live corals. The observed increase in N2-fixation from dead corals may increase the availability of nitrogen for use in trophic processes within the reef for an extended period following the initial mortality event. If the spatial scale over which coral mortality has occurred in past thermal bleaching events is considered the ramifications of such an increase may be substantial.  相似文献   

3.
A reciprocal transplant experiment (RTE) of the reef-building coral Porites lobata between shallow (1.5 m at low tide) back reef and forereef habitats on Ofu and Olosega Islands, American Samoa, resulted in phenotypic plasticity for skeletal characteristics. Transplants from each source population (back reef and forereef) had higher skeletal growth rates, lower bulk densities, and higher calcification rates on the back reef than on the forereef. Mean annual skeletal extension rates, mean bulk densities, and mean annual calcification rates of RTE groups were 2.6–9.8 mm year−1, 1.41–1.44 g cm−3, and 0.37–1.39 g cm−2 year−1 on the back reef, and 1.2–4.2 mm year−1, 1.49–1.53 g cm−3, and 0.19–0.63 g cm−2 year−1 on the forereef, respectively. Bulk densities were especially responsive to habitat type, with densities of transplants increasing on the high energy forereef, and decreasing on the low energy back reef. Skeletal growth and calcification rates were also influenced by source population, even though zooxanthella genotype of source colonies did not vary between sites, and there was a transplant site x source population interaction for upward linear extension. Genetic differentiation may explain the source population effects, or the experiment may have been too brief for phenotypic plasticity of all skeletal characteristics to be fully expressed. Phenotypic plasticity for skeletal characteristics likely enables P. lobata colonies to assume the most suitable shape and density for a wide range of coral reef habitats.  相似文献   

4.
Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/c, phaeopigments and MI contributed to the variance between health conditions.  相似文献   

5.
We document long-term effects of a simulated bleaching event on the reproductive output and offspring viability of the soft coral Lobophytum compactum. Corals were subjected to temperature and solar radiation treatments to produce both moderately (48–60%) and heavily (90–95%) bleached colonies. Although bleached colonies recovered their zooxanthellae within 10 to 18 weeks, impacts on reproductive output were significant for at least two annual spawning seasons. In the first year, both polyp fecundity and mean oocyte diameter were reduced and inversely correlated with the degree of bleaching, with complete failure of fertilization in the group of heavily bleached colonies. For moderately bleached soft corals, survival and growth of sexual offspring did not differ significantly from those of unbleached colonies. Although no further reductions in zooxanthellae densities in experimental soft corals were recorded throughout the subsequent second year, egg size and fecundity of the heavily bleached soft corals were still significantly reduced 20 months later. Severe bleaching clearly has long-term sub-lethal impacts, reducing overall reproductive output for at least two spawning seasons. Accepted: 1 June 2000  相似文献   

6.
Under bleaching conditions, corals lose their symbiotic zooxanthellae, and thus, the ability to synthesize fatty acids (FAs) from photosynthetically derived carbon. This study investigated the lipid content and FA composition in healthy and bleached corals from the Odo reef flat in Okinawa, southern Japan, following a bleaching event. It was hypothesized that the FA composition and abundance would change as algae are lost or die, and possibly microbial abundance would increase in corals as a consequence of bleaching. The lipid content and FA composition of three healthy coral species (Pavona frondifera, Acropora pulchra, and Goniastrea aspera) and of partially bleached and completely bleached colonies of P. frondifera were examined. The FA composition did not differ among healthy corals, but differed significantly among healthy, partially bleached, and completely bleached specimens of P. frondifera. Completely bleached corals contained significantly lower lipid and total FA content, as well as lower relative amounts of polyunsaturated FAs and higher relative amounts of saturated FAs, than healthy and partially bleached corals. Furthermore, there was a significantly higher relative concentration of monounsaturated FAs and odd-numbered branched FAs in completely bleached corals, indicating an increase in bacterial colonization in the bleached corals.  相似文献   

7.
This study investigated the morphology, severity, and distribution of growth anomalies (GAs) in the coral, Montipora capitata, from Wai‘ōpae tide pools, southeast Hawai‘i Island. A macro-image analysis of skeletal microstructure placed GAs into two definable categories; Type A and Type B. Type A GAs had polyp density reduced by 43.05 ± 0.80% (mean ± SE) compared to healthy M. capitata tissue, with many fused and protrusive tuberculae. Type B GAs had no discernable polyps or calices and fused protuberant coenosteum. The prevalence of Type A and Type B GAs among all M. capitata colonies (n = 1,093) in 8 tide pools at Wai‘ōpae was 22.1% (range 2.8–33.7%) and 8.2% (range 0.0–16.9%), respectively. The proportion of colony surface area occupied by GA (relative GA cover) was quantified to assess the severity of this disease among all surveyed colonies. The relative GA cover was significantly greater on colonies larger than 1 m in diameter than smaller colonies and in the central portion of colonies than in the periphery. Furthermore, relative GA cover was negatively related to water motion (R 2 = 0.748, P < 0.01). Developing field diagnostic criteria of M. capitata GA allowed for a detailed epizootiological assessment that determined several cofactors associated with disease severity. Such epizootiological analysis is applicable to future studies of GAs elsewhere.  相似文献   

8.
A mild bleaching event was observed among Pocillopora spp. in the southern Gulf of California in the spring of 2006. Uniform bleaching occurred in numerous colonies on the upper portions of their branches. Most (∼90%) colonies that exhibited bleaching contained a species of endosymbiotic dinoflagellate, Symbiodinium C1b-c, which differed from the Symbiodinium D1 found inhabiting most unbleached colonies. Analysis of chlorophyll fluorescence, indicated a decline in photosystem II photochemical activity, especially among colonies populated with C1b-c. By early August, most affected colonies had recovered their normal pigmentation and fluorescence values were once again high for all colonies. No mortality was observed among tagged bleached colonies nor did symbiont species composition change during recovery. This unusual episode of bleaching did not appear to be a response to thermal stress, but may have been triggered by high levels of solar radiation during a period of unseasonally high water clarity in the early spring.  相似文献   

9.
Colonies of Montastrea annularis from Carysfort Reef, Florida, that remained bleached seven months after the 1987 Caribbean bleaching event were studied to determine the long term effects of bleaching on coral physiology. Two types of bleached colonies were found: colonies with low numbers of zooxanthellae with normal pigment content, and a colony with high densities of lowpigment zooxanthellae. In both types, the zooxanthellae had an abnormal distribution within polyp tissues: highest densities were observed in basal endoderm and in mesenteries where zooxanthellae are not normally found. Bleached corals had 30% less tissue carbon and 44% less tissue nitrogen biomass per skeletal surface area, but the same tissue C:N ratio as other colonies that either did not bleach (normal) or that bleached and regained their zooxanthellae (recovered). Bleached corals were not able to complete gametogenesis during the reproductive season following the bleaching, while recovered corals were able to follow a normal gametogenic cycle. It appears that bleached corals were able to survive the prolonged period without nutritional contribution from their zooxanthellae by consuming their own structural materials for maintenance, but then, did not have the resources necessary for reproduction. The recovered corals, on the other hand, must have regained their zooxanthellae soon after the bleaching event since neither their tissue biomass nor their ability to reproduce were impaired.  相似文献   

10.
The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 ) and phosphate (PO4 3−) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l−1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 and PO4 3− stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.  相似文献   

11.
X-radiography and carbon and oxygen stable isotope analysis have been used to examine the effects of prolonged bleaching on the growth rate and chemical composition of the skeleton of the massive reef coral, Montastrea annularis. The post-bleaching linear growth of one colony that remained bleached for 10 to 12 months following the 1987 Caribbean-wide bleaching event was only 37% of mean annual growth from pre-bleaching years, and was manifest as a loss of the following year's low density band. Two colonies that did not bleach (normal) and two that bleached and regained their coloration (recovered) had linear growth rates over the same period that were 81 to 98% of mean pre-bleaching annual growth. Linear growth by a third recovered coral was 66% of pre-bleaching growth. No sub-annual stress bands were associated with the bleaching. The skeleton of the bleached colony had carbon and oxygen isotopic compositions that were reduced in range and enriched (increased) in both 13C and 18O in the post-bleaching year. The skeletons of two of the nine colonies, one bleached and one recovered, had depleted (reduced) 18O values (-5.3 and -4.8%., respectively) during the bleaching episode that agree with the suggestion that positive temperature anomalies occurred during, and may have caused, the bleaching event. The range and values for all other normal and recovered corals, however, were not different between the post-bleaching year and previous years. Our data suggest that stress bands and isotopic analysis of coral skeletons may not always be reliable tools for examining the occurrence, cause or effects of certain discrete stress events that may interrupt skeletal growth.  相似文献   

12.
Bastidas  C.  Fabricius  K. E.  Willis  B. L. 《Hydrobiologia》2004,530(1-3):433-441
We evaluated the role that demography may play in the formation of local aggregations of Sinularia flexibilis (Quoy & Gaimard, 1833), a soft coral that commonly dominates inshore coral reefs of the Great Barrier Reef (GBR), Australia. Two populations on inshore reefs of the Palm Islands were censused once a year for 3 years, starting 10 mo after the extensive bleaching mortality in early 1998. Larger colonies became more prevalent over time; mean colony size increasing by 35%, from 276 cm2 in 1998 to 373 cm2 in 2000. Growth rates were size dependent, with smaller colonies growing proportionally faster than larger colonies. Change in size relative to initial size indicated an expected mean annual growth of 128 cm2 for a 50-cm2 colony. Zero growth was predicted at 532±21cm2, with colonies larger than this likely to undergo fission or shrink. Forty-three percent of colonies were undergoing fission at any time at both localities. Most new colonies were produced by fission (70%, n=285), with the remainder produced by the recruitment of sexually produced larvae (19%) or by colony translocation (11%). The sexual and asexual recruitment rates were 0.24 and 1.0 recruits m- 2 year−1, respectively. Opportunistic recruitment and rapid growth following disturbances are commonly assumed to be the mechanisms leading soft corals to dominate locally. In this study, these mechanisms operated more slowly than expected, with no net change in population size.  相似文献   

13.
With this study we estimated the changes in colour, bleaching and mortality of coral colonies from February to December 2007, using the colour reference card method. The study was developed in the Watamu Marine Park lagoon (Kenya), bridging the local summer when seawater temperatures were highest and coral bleaching risk was at its maximum. Seven coral genera were selected, and their colour recorded using a colour reference card (Coral Watch card). Seven different scenarios of bleaching and mortality were observed, varying among the coral genera and between two species in the genus Pocillopora. Twenty percent of the colonies bleached, of which 50% died. Only 15% of the coral that did not bleach died. Branching genera had a higher bleaching incidence than massive and sub-massive genera. Pocillopora showed the highest bleaching susceptibility, followed by Acropora, and the highest level of mortality. Of the two species of Pocillopora considered in this study, P. eydouxi showed higher bleaching and mortality levels, while P. verrucosa bleached less and experienced only partial mortality. Our results evidenced different patterns of coral bleaching and mortality which were easily and clearly detected with the colour card method during both bleaching and a post-bleaching events.  相似文献   

14.
Chlorophyll-a (chl-a) and carotenoid pigments of the zooxanthellate octocoral Sinularia flexibilis were analyzed using high performance liquid chromatography following exposure to three light intensities for over 30 days. From the coral fragments located at different light intensities, a total carotenoid of >41 μg g−1 dry weight, including peridinin, xanthophylls (likely diadinoxanthin + diatoxanthin), and chl-a as the most abundant pigments, with minor contents of astaxantin and β-carotene were detected. The whole content of chl-a weighed 5 μg g−1 dry weight in all coral colonies. Chl-a and carotenoids contributed 11.2% and 88.2%, respectively, to all pigments detected, and together accounted for 99.4% of the total pigments present. The highest contents of carotenoids and chl-a was observed in the coral grafts placed in an irradiance of 100 μmol quanta m−2 s−1; they showed lower ratios of total carotenoids: chl-a compared to those exposed to 400 μmol quanta m−2 s−1 after >30 days of incubation. The ratios of peridinin and xanthophylls with respect to chl-a from the colonies at 400 μmol quanta m−2 s−1 were approximately double those observed at irradiances of 100 and 200 μmol quanta m−2 s−1. Partial quantification of pigments in this study showed that the carotenoids of S. flexibilis showed a decrease at irradiances above 100 μmol quanta m−2 s−1, with the exception of an increase in β-carotene at 200 μmol quanta m−2 s−1.  相似文献   

15.
Coral bleaching is an increasingly prominent threat to coral reef ecosystems, not only to corals, but also to the many organisms that rely on coral for food and shelter. Coral-feeding fishes are negatively affected by coral loss caused by extensive bleaching, but it is unknown how feeding behaviour of most corallivorous fishes changes in response to coral bleaching. In this study, coral bleaching was experimentally induced in situ to examine the feeding response of two obligate corallivorous fish, Labrichthys unilineatus (Labridae) and Chaetodon baronessa (Chaetodontidae). Feeding rates were monitored before, during, and immediately after experimental bleaching of prey corals. L. unilineatus significantly increased its feeding on impacted corals during bleaching, but showed a steady decline in feeding once corals were fully bleached. Feeding response of L. unilineatus appears to parallel the expected stress-induced mucous production by bleaching colonies. In contrast, C. baronessa preferentially fed from healthy colonies over bleached colonies, although bleached colonies were consumed for five days following manipulation. Feeding by corallivorous fishes can play an important role in determining coral condition and mortality of corals following stress induced bleaching.  相似文献   

16.
A thermal stress anomaly in 2005 caused mass coral bleaching at a number of north-east Caribbean reefs. The impact of the thermal stress event and subsequent White-plague disease type II on Porites porites and Colpophyllia natans was monitored using a time series of photographs from Tektite Reef, Virgin Islands National Park, St. John. Over 92% of the P. porites and 96% of the C. natans experienced extensive bleaching (>30% of colony bleached). During the study, 56% of P. porites and 42% of C. natans experienced whole-colony mortality within the sample plots. While all whole-colony mortality of P. porites was directly attributed to coral bleaching, the majority (82%) of the C. natans colonies that experienced total mortality initially showed signs of recovery from bleaching, before subsequently dying from White-plague disease type II.  相似文献   

17.
Corals are an essential and threatened habitat for a diverse range of reef-associated animals. Episodes of coral bleaching are predicted to increase in frequency and intensity over coming decades, yet the effects of coral-host bleaching on the associated animal communities remain poorly understood. The present study investigated the effects of host-colony bleaching on the obligate coral-dwelling crab, Trapezia cymodoce, during a natural bleaching event in the lagoon of Lizard Island, Australia. Branching corals, which harbour the highest diversity of coral associates, comprised 13% of live coral cover at the study site, with 83% affected by bleaching. Crabs on healthy and bleached colonies of Pocillopora damicornis were monitored over a 5-week period to determine whether coral bleaching affected crab density and movement patterns. All coral colonies initially contained one breeding pair of crabs. There was a significant decline in crab density on bleached corals after 5 weeks, with many corals losing one or both crabs, yet all healthy colonies retained a mating pair. Fecundity of crabs collected from bleached and healthy colonies of P. damicornis was also compared. The size of egg clutches of crabs collected from bleached hosts was 40% smaller than those from healthy hosts, indicating a significant reduction in fecundity. A laboratory experiment on movement patterns found that host-colony bleaching also prompted crabs to emigrate in search of more suitable colonies. Emigrant crabs engaged in aggressive interactions with occupants of healthy hosts, with larger crabs always usurping occupants of a smaller size. Decreased densities and clutch sizes, along with increased competitive interactions, could potentially result in a population decline of these important coral associates with cascading effects on coral health.  相似文献   

18.
This 14-year study (1989–2003) develops recovery benchmarks based on a period of very strong coral recovery in Acropora-dominated assemblages on the Great Barrier Reef (GBR) following major setbacks from the predatory sea-star Acanthaster planci in the early 1980s. A space for time approach was used in developing the benchmarks, made possible by the choice of three study reefs (Green Island, Feather Reef and Rib Reef), spread along 3 degrees of latitude (300 km) of the GBR. The sea-star outbreaks progressed north to south, causing death of corals that reached maximum levels in the years 1980 (Green), 1982 (Feather) and 1984 (Rib). The reefs were initially surveyed in 1989, 1990, 1993 and 1994, which represent recovery years 5–14 in the space for time protocol. Benchmark trajectories for coral abundance, colony sizes, coral cover and diversity were plotted against nominal recovery time (years 5–14) and defined as non-linear functions. A single survey of the same three reefs was conducted in 2003, when the reefs were nominally 1, 3 and 5 years into a second recovery period, following further Acanthaster impacts and coincident coral bleaching events around the turn of the century. The 2003 coral cover was marginally above the benchmark trajectory, but colony density (colonies.m−2) was an order of magnitude lower than the benchmark, and size structure was biased toward larger colonies that survived the turn of the century disturbances. The under-representation of small size classes in 2003 suggests that mass recruitment of corals had been suppressed, reflecting low regional coral abundance and depression of coral fecundity by recent bleaching events. The marginally higher cover and large colonies of 2003 were thus indicative of a depleted and aging assemblage not yet rejuvenated by a strong cohort of recruits.  相似文献   

19.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

20.
Coral mucus released from Acropora formosa and Montipora digitata was incubated with bacteria under dark conditions for 1 year to evaluate the quantitative degradability. All the mucus samples showed a similar decomposition pattern: about 80% of total organic carbon (TOC) in the mucus was mineralized within 1 month, while some mucus was slowly decomposed over the 1 year. Regression analysis using an exponential curve considering three degradability pools (labile, semilabile, and refractory) fitted the changes of the TOC concentrations very well (r 2 > 0.99). Compiling the data on the two coral species, the labile organic C in the coral mucus had mineralization rates of 10–18% d−1 and accounted for 79–87% of the initial TOC in the mucus. Semilabile organic C had mineralization rates of 0.3−1.6% d−1 and accounted for 11−18% of the initial TOC. Refractory organic C accounted for 6% at most. These results suggest that not all coral mucus is rapidly decomposed by bacteria but some mucus remains as semilabile and refractory organic matter for several months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号