首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Psychiatric conditions are to some degree under genetic influences. Despite the application of advanced genetic and molecular biological technologies, the genetic bases of the human behavioral traits and psychiatric diseases remains largely unresolved. Conventional genetic linkage approaches have not yielded definitive results, possibly because of the absence of objective diagnostic tests, the complex nature of human behavior or the incomplete penetrance of psychiatric traits. However, recent studies have revealed some genes of interest using multifaceted approaches to overcome these challenges. The approaches include using families in which specific behaviors segregate as a mendelian trait, utilization of endophenotypes as biological intermediate traits, identification of psychiatric disease phenotypes in genomic disorders, and the establishment of mouse models.  相似文献   

2.
Harnessing the mouse to unravel the genetics of human disease   总被引:5,自引:1,他引:4  
Complex traits, i.e. those with multiple genetic and environmental determinants, represent the greatest challenge for genetic analysis, largely due to the difficulty of isolating the effects of any one gene amid the noise of other genetic and environmental influences. Methods exist for detecting and mapping the Quantitative Trait Loci (QTLs) that influence complex traits. However, once mapped, gene identification commonly involves reduction of focus to single candidate genes or isolated chromosomal regions. To reach the next level in unraveling the genetics of human disease will require moving beyond the focus on one gene at a time, to explorations of pleiotropism, epistasis and environment-dependency of genetic effects. Genetic interactions and unique environmental features must be as carefully scrutinized as are single gene effects. No one genetic approach is likely to possess all the necessary features for comprehensive analysis of a complex disease. Rather, the entire arsenal of behavioral genomic and other approaches will be needed, such as random mutagenesis, QTL analyses, transgenic and knockout models, viral mediated gene transfer, pharmacological analyses, gene expression assays, antisense approaches and importantly, revitalization of classical genetic methods. In our view, classical breeding designs are currently underutilized, and will shorten the distance to the target of understanding the complex genetic and environmental interactions associated with disease. We assert that unique combinations of classical approaches with current behavioral and molecular genomic approaches will more rapidly advance the field.  相似文献   

3.
In recent years it has become possible to develop animal models of psychiatric disease in genetically modified mice. While great strides have been made in the development of genetic and neurobiological tools with which to model psychiatric disease, elucidation of neural and molecular mechanisms thought to underlie behavioral phenotypes has been hindered by an inadequate analysis of behavior. This is unfortunate given the fact that the experimental analysis of behavior has created powerful methods for isolating and describing the functional properties of behavioral mechanisms that are capable of providing deep understanding of behavioral phenotypes. A better understanding of the biological basis of normal behavior and its disturbance in psychiatric disease will require the application of these rigorous behavior analytic tools to animal models. In this review we provide an example of a merging of genetic and behavioral methods and illustrate its utility in the analysis of a mouse model of the motivational deficits in schizophrenia. The synergy between basic behavior analysis, neuroscience, and animal models of psychiatric disease has great potential for achieving a deeper understanding of behavior and its neurobiological mechanisms as well as for leading to improvements in diagnosis and treatment in clinical settings.  相似文献   

4.
It is increasingly accepted that the imprecision of categorical psychiatric diagnoses can be a limiting factor in understanding the genetic basis of human behavioral abnormalities. Genetic investigation of endophenotypes--more precisely defined quantitative traits hypothesized to underlie disease syndromes--offers great promise as an alternative or complement to studies of categorical disease phenotypes. However, there is not yet standardization of the methods by which candidate endophenotypes should be chosen and applied. Fruitful endophenotype studies depend on the selection of heritable, quantitative traits that can be objectively and reliably measured. In this article, we propose guidelines for such investigations for psychiatric disorders, using endophenotypes previously proposed for bipolar disorder as particular examples. Gene expression studies and non-human primate models are recent developments in which an endophenotype approach might prove particularly valuable.  相似文献   

5.
Smoking and depression are significant public health problems with multiple etiological dimensions and outcomes. Although each condition is important by itself, they are important because they often potentiate each other. Consequently, it is also essential to understand the nature their relationship. This representative review focuses on the genetic etiology of the relationship in the context of reviewing first the epidemiology of depression and smoking, and then by exploring behavioral and molecular genetic studies, and other psychiatric and medical comorbidities. At this point, epidemiological evidence for a relationship between depression and smoking/nicotine dependence is compelling. Although behavioral genetic results differ somewhat by gender and in accordance with specific definitions of depression and smoking variables, recent studies show converging evidence for common genetic factors underlying the relationship, often in addition to non-shared environmental factors. The search for underlying genes and genetic mechanisms is at an early stage, but shows promising candidate genes and genetic approaches for future studies.  相似文献   

6.
Twins have been extensively used in economics, sociology, and behavioral genetics to investigate the role of genetic endowments on a broad range of social, demographic, and economic outcomes. However, the focus in these literatures has been distinct.: The economic literature has been primarily concerned with the need to control for unobserved endowments--including as an important subset, genetic endowments--in analyses that attempt to establish the impact of one variable, often schooling, on a variety of economic, demographic, and health outcomes. Behavioral genetic analyses have mostly been concerned with decomposing the variation in the outcomes of interest into genetic, shared environmental, and non-shared environmental components, with recent multivariate analyses investigating the contributions of genes and the environment to the correlation and causation between variables. Despite the fact that twins studies and the recognition of the role of endowments are central to both of these literatures, they have mostly evolved independently. In this paper we develop formally the relationship between the economic and behavioral genetic approaches to the analyses of twins, and we develop an integrative approach that combines the identification of causal effects, which dominates the economic literature, with the decomposition of variances and covariances into genetic and environmental factors that are the primary goal of behavioral genetic approaches. We apply this integrative ACE-beta approach to an illustrative investigation of the impact of schooling on several demographic outcomes such as fertility and nuptiality and health.  相似文献   

7.
Stressful events during adulthood are potent adverse environmental factors that can predispose individuals to psychiatric disorders, including depression; however, many individuals exposed to stressful events can adapt and function normally. While stress vulnerability may influence depression, the molecular mechanisms underlying the susceptibility and adaptation to chronic stress within the brain are poorly understood. In this study, two genetically distinct mouse strains that exhibit different behavioral responses to chronic stress were used to demonstrate how the differential epigenetic status of the glial cell-derived neurotrophic factor (Gdnf) gene in the ventral striatum modulates susceptibility and adaptation to chronic stress. Our results suggest that the histone modifications and DNA methylation of the Gdnf promoter have crucial roles in the control of behavioral responses to chronic stress. Our data provide insights into these mechanisms, suggesting that epigenetic modifications of Gdnf, along with genetic and environmental factors, contribute to behavioral responses to stress.  相似文献   

8.
Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD), Parkinson's disease (PD) and Huntington's disease (HD) have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP) has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage) will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which genetic disorders play in the development of efficacious interventions and medications is foreseeable.  相似文献   

9.
Genetic approaches to psychiatric illness need appropriate animal models both for investigating how genetic variants give rise to behavioural disorder and for identifying genes that may be important in human conditions. Yet the relevance of many animal models to psychiatric illness is often not clear. Here I discuss how genetic approaches can be used to validate animal models of anxiety, an approach which is applicable to other animal models. One drawback of genetic validation is the difficulty inherent in identifying the molecular variants that influence the phenotype. I review genetic approaches that have the potential to overcome this problem.  相似文献   

10.
Psychiatric genetics has made substantial progress in the last decade, providing new insights into the genetic etiology of psychiatric disorders, and paving the way for precision psychiatry, in which individual genetic profiles may be used to personalize risk assessment and inform clinical decision-making. Long recognized to be heritable, recent evidence shows that psychiatric disorders are influenced by thousands of genetic variants acting together. Most of these variants are commonly occurring, meaning that every individual has a genetic risk to each psychiatric disorder, from low to high. A series of large-scale genetic studies have discovered an increasing number of common and rare genetic variants robustly associated with major psychiatric disorders. The most convincing biological interpretation of the genetic findings implicates altered synaptic function in autism spectrum disorder and schizophrenia. However, the mechanistic understanding is still incomplete. In line with their extensive clinical and epidemiological overlap, psychiatric disorders appear to exist on genetic continua and share a large degree of genetic risk with one another. This provides further support to the notion that current psychiatric diagnoses do not represent distinct pathogenic entities, which may inform ongoing attempts to reconceptualize psychiatric nosology. Psychiatric disorders also share genetic influences with a range of behavioral and somatic traits and diseases, including brain structures, cognitive function, immunological phenotypes and cardiovascular disease, suggesting shared genetic etiology of potential clinical importance. Current polygenic risk score tools, which predict individual genetic susceptibility to illness, do not yet provide clinically actionable information. However, their precision is likely to improve in the coming years, and they may eventually become part of clinical practice, stressing the need to educate clinicians and patients about their potential use and misuse. This review discusses key recent insights from psychiatric genetics and their possible clinical applications, and suggests future directions.  相似文献   

11.
Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans.  相似文献   

12.
Imaging genetics is an emerging field aimed at identifying and characterizing genetic variants that influence measures derived from anatomical or functional brain images, which are in turn related to brain-related illnesses or fundamental cognitive, emotional and behavioral processes, and are affected by environmental factors. Here we review the recent evolution of statistical approaches and outstanding challenges in imaging genetics, with a focus on population-based imaging genetic association studies. We show the trend in imaging genetics from candidate approaches to pure discovery science, and from univariate to multivariate analyses. We also discuss future directions and prospects of imaging genetics for ultimately helping understand the genetic and environmental underpinnings of various neuropsychiatric disorders and turning basic science into clinical strategies.  相似文献   

13.
The comorbidity of type 2 diabetes (T2D) with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ) risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI), which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further.  相似文献   

14.
Mechanisms of magnesium homeostasis intensively studied over the last 10–15 years by means of pathophysiological and molecular genetic approaches have been considered. Impairments of magnesium homeostasis causes the development of magnesium-deficient states, which have been found in many common diseases (diabetes mellitus, cardiovascular diseases, chronic fatigue syndrome, alcoholism, psychiatric and neurologic diseases, etc.), stress condition, effects of some environmental factors as well as therapy with some drugs. Special attention is paid to familial hypomagnesemias caused by genetic defects of magnesium transport systems. The review considers clinical and biochemical characteristics of twelve familial disorders including mechanisms of their development. Deeper understanding of mechanisms of regulation of magnesium homeostasis will results in the development of new approaches in diagnostics, prophylaxis and treatment of magnesium-deficient conditions.  相似文献   

15.
Psychiatric disorders, including autism spectrum disorders and schizophrenia, are extremely heritable complex genetic neurodevelopmental disorders. It is now possible to directly reprogram fibroblasts from psychiatric patients into human induced pluripotent stem cells (hiPSCs) and subsequently differentiate these disorder-specific hiPSCs into neurons. This means that researchers can generate nearly limitless quantities of live human neurons with genetic backgrounds that are known to result in psychiatric disorders, without knowing which genes are interacting to produce the disease state in each patient. With these new human-cell-based models, scientists can investigate the precise cell types that are affected in these disorders and elucidate the cellular and molecular defects that contribute to disease initiation and progression. Here, we present a short review of experiments using hiPSCs and other sophisticated in vitro approaches to study the pathways underlying psychiatric disorders.  相似文献   

16.
In comparison to other complex disease traits, alcoholism and alcohol abuse are influenced by the combined effects of many genes that alter susceptibility, phenotypic expression and associated morbidity, respectively. Many genetic studies, in both animal models and humans, have identified genetic intervals containing genes that influence alcoholism or behavioral responses to ethanol. Concurrently, a growing number of microarray studies have identified gene expression differences related to ethanol drinking or other ethanol behaviors. However, concerns about the statistical power of these experiments, combined with the complexity of the underlying phenotypes, have greatly hampered the identification of candidate genes underlying ethanol behaviors. Meta-analysis approaches using recent compilations of large datasets of microarray, behavioral and genetic data promise improved statistical power for detecting the genes or gene networks affecting ethanol behaviors and other complex traits.  相似文献   

17.
Depression is a complex psychiatric disturbance involving many environmental, genetic, and epigenetic factors. Until now, genetic, and non-genetic studies are still on the way to understanding the complex mechanism of this disease, and there are still many questions that have not yet been answered. Depression includes a large spectrum of heterogeneous symptoms correlated to the deficit of a range of psychological, cognitive, and emotional processes, and it affects various age groups. It is classified into several types according to the severity of symptoms, time of occurrence, and time. Following the World Health Organization (WHO), depression attacks near 350 million persons globally. Several factors overlap in causing depression, including genetic and epigenetic factors, environmental conditions, various stresses, lack of some nutrients to which people are exposed, and excessive stress and abuse in childhood. This study included conducting surveys on depression and new treatment trends based on epigenetic factors associated with the occurrence of the disease. Epigenetic factors provide a completely novel dimension to therapeutic approaches as most diseases are not monogenic, and it is likely that the environment has a significant contribution. Epigenetic inheritance is included in many mental and psychiatric disorders such as depression. In general, epigenetic modifications could be summarized in 3 major points: DNA methylation, histone modification, and non-mediated regulation of RNA (ncRNA). This study also describes some genes associated with one of the depressive disorders using bioinformatics tools and gene bank and had the genes: SLC6A4, COMT, TPH2, FKBP5, MDD1, HTR2A, and MDD2. As in this study, the awareness of Saudi society about depression and its genetic and non-genetic causes was estimated. The results showed that an encouraging percentage of more than half of the research sample possessed correct information about this disorder.  相似文献   

18.
Optogenetics is a rapidly evolving field of technology that allows optical control of genetically targeted biological systems at high temporal and spatial resolution. By heterologous expression of light-sensitive microbial membrane proteins, opsins, cell type-specific depolarization or silencing can be optically induced on a millisecond time scale. What started in a petri dish is applicable today to more complex systems, ranging from the dissection of brain circuitries in vitro to behavioral analyses in freely moving animals. Persistent technical improvement has focused on the identification of new opsins, suitable for optogenetic purposes and genetic engineering of existing ones. Optical stimulation can be combined with various readouts defined by the desired resolution of the experimental setup. Although recent developments in optogenetics have largely focused on neuroscience it has lately been extended to other targets, including stem cell research and regenerative medicine. Further development of optogenetic approaches will not only highly increase our insight into health and disease states but might also pave the way for a future use in therapeutic applications.  相似文献   

19.
Pitcher TE  Mays HL 《Genetica》2008,134(1):1-4
This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.  相似文献   

20.
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X‐ or Y‐linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome‐wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large‐scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome‐wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号