首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Isolated intact spinach chloroplasts respond to changes of the sorbitol concentration of the suspending medium as near-perfect osmometers within a large range of osmotic potentials. Under isotonic conditions (=9–10 bar), their average osmotic volume is 24 m3 and the total volume 36 m3. The osmotic volume can be increased to 63 m3 by lowering the sorbitol concentration until a critical osmotic potential of =4 bar is reached. Below that value chloroplasts rupture. Between 10 bar and 4 bar, volume changes are reversible. 2. Increasing the chloroplast volume above 24 m3 causes inhibition of photosynthesis, with 50% inhibition occurring at an osmotic potential of =5–6 bar. This corresponds to an osmotic volume of 45–55 m3. Depending on the duration of hypotonic treatment, inhibition of photosynthesis is more or less reversible. 3. Between 4 and 10 bar, the chloroplast envelope exhibits a very low permeability for ferricyanide, many metabolites, and soluble stroma proteins. 4. Electron transport is not inhibited by swelling of chloroplasts. Also, the ATP/ADP-ratio remains unchanged. 5. The solute concentration in the chloroplasts appears to be optimal for photosynthesis at 10 bar. Increasing the chloroplast volume causes inhibition of photosynthesis by dilution effects.  相似文献   

2.
When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.Abbreviations ASM artificial stroma medium - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate-carboxylase/oxygenase - RWC relative water content  相似文献   

3.
The light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37) was inhibited in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Decreases in the velocity and magnitude of light activation correlated with the overall reduction in CO2 fixation rates. Responses of osmotically stressed chloroplasts to both varying pH and exogeous dihydroxyacetone phosphate (DHAP) or 3-phosphoglycerete (PGA) were examined. In the presence of DHAP, the absolute rate of CO2 fixation was increased and this increase was most pronounced at alkaline pH. Enhanced light activation of these enzymes was also observed under these conditions. However, in the presence of PGA, similar increases in photosynthetic rate and enzyme activation were not evident. Light-dependent stromal alkalization was unaffected by the stress treatments. Inhibition of light activation under hypertonic conditions is discussed in terms of substrate availability, possible alterations of the redox state of ferredoxin and associated electron carriers, and inhibited enzyme-enzyme or enzyme-substrate interactions involved in the light activation process.Abbreviations and symbols DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate - s osmotic potential  相似文献   

4.
The reversibility of the inhibition of photosynthetic reactions by water stress was examined with four systems of increasing complexity—stromal enzymes, intact chloroplasts, mesophyll protoplasts, and leaf slices. The inhibition of soluble chloroplast enzymes by high solute concentrations was instantly relieved when solutes were properly diluted. In contrast, photosynthesis was not restored but actually more inhibited when isolated chloroplasts exposed to hypertonic stress were transferred to conditions optimal for photosynthesis of unstressed chloroplasts. Upon transfer, chloroplast volumes increased beyond the volumes of unstressed chloroplasts, and partial envelope rupture occurred. In protoplasts and leaf slices, considerable and rapid, but incomplete restoration of photosynthesis was observed during transfer from hypertonic to isotonic conditions. Chloroplast envelopes did not rupture in situ during water uptake. It is concluded that inhibition of photosynthesis by severe water stress is at the biochemical level brought about in part by reversible inhibition of chloroplast enzymes and in part by membrane damage which requires repair mechanisms for reversibility. Both soluble enzymes and membranes appear to be affected by the increased concentration of internal solutes, which is caused by dehydration.  相似文献   

5.
Steven C. Huber 《Planta》1980,149(5):485-492
Chloroplast stromal volume and pH influenced the phosphate (Pi)-dependence of photosynthesis of spinach (Spinacia oleracea L.) chloroplasts. Decreasing the sorbitol concentration in the reaction mixture from 0.35 to 0.25 M, or decreasing the external pH from 8.3 to 7.3, extended the induction period of photosynthesis and decreased both the optimal [Pi] and the minimal [Pi] required to inhibit O2 evolution completely. At least part of the effect of external pH was attributable to changes in stromal pH on the basis of effects of NH4Cl and sodium acetate at a constant external pH. When the external pH was increased from 7.3 to 8.3, the stromal pH changed only about 0.6 pH units. Hence, the pH gradient across the envelope was diminished and the efflux of phosphoglycerate relative to dihydroxyacetone phosphate was enhanced.Calvin-cycle activity, varied with light intesity or electron transport inhibitors, affected the rate of photosynthesis but not the induction period or the Pi optimum for photosynthesis. Relatively low Calvin-cycle activity was apparently sufficient to fill metabolite pools and thus terminate the induction period. The results indicate that pH does not affect the Pi dependence of photosynthesis by reducing Calvin-cycle activity. Rather, it is postulated that at low stromal pH, larger metabolic pools are required to maintain maximum rates of photosynthesis because of changes in substrate affinity of some Calvin-cycle enzymes. Consequently, chloroplast photosynthesis would be more sensitive to exogenous Pi.Abbreviations DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate - Pi inorganic phosphate Cooperative investigations of the North Carolina Agricultural Research Service and Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, Raleigh, N.C. Paper No. 6391 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, N.C., USA  相似文献   

6.
The role of monovalent cations in the photosynthesis of isolated intact spinach chloroplasts was investigated. When intact chloroplasts were assayed in a medium containing only low concentrations of mono- and divalent cations (about 3 mval l-1), CO2-fixation was strongly inhibited although the intactness of chloroplasts remained unchanged. Addition of K+, Rb+, or Na+ (50–100 mM) fully restored photosynthesis. Both the degree of inhibition and restoration varied with the plant material and the storage time of the chloroplasts in low-salt medium. In most experiments the various monovalent cations showed a different effectiveness in restoring photosynthesis of low-salt chloroplasts (K+>Rb+>Na+). Of the divalent cations tested, Mg2+ also restored photosynthesis, but to a lesser extent than the monovalent cations.In contrast to CO2-fixation, reduction of 3-phosphoglycerate was not ihibited under low-salt conditions. In the dark, CO2-fixation of lysed chloroplasts supplied with ATP, NADPH, and 3-phosphoglycerate strictly required the presence of Mg2+ but was independent of monovalent cations. This finding excludes a direct inactivation of Calvin cycle enzymes as a possible basis for the inhibition of photosynthesis under low-salt conditions.Light-induced alkalization of the stroma and an increase in the concentration of freely exchangeable Mg2+ in the stroma, which can be observed in normal chloroplasts, did not occur under low-salt conditions but were strongly enhanced after addition of monovalent cations (50–100 mM) or Mg2+ (20–50 mM).The relevance of a light-triggered K+/H+ exchange at the chloroplast envelope is discussed with regard to the light-induced increase in the pH and the Mg2+ concentration in the stroma, which are thought to be obligatory for light activation of Calvincycle enzymes.  相似文献   

7.
J. Sanchez  M. Mancha 《Planta》1981,153(6):519-523
The kinetics of incorporation of [2-14C] acetate into lipids and acyl-CoAs in relation to added CoA and ATP by isolated spinach chloroplasts have been examined. The effect of the concentration of these cofactors on lipid and acyl-CoA synthesis was also studied. In the absence of cofactors, or when only one was present, the incorporation was very low and went mainly into lipids. When both cofactors were present a strong stimulation of both activities occurred. After 25 min, acyl-CoAs were more strongly labeled than lipids and both activities continued linearly for at least 60 min.Abbreviations ACP acyl carrier protein - FFA free fatty acids  相似文献   

8.
The kinetic properties of the phosphate translocator from maize (Zea mays L.) mesophyll chloroplasts have been determined. We have used a double silicone-oil-layer centrifugation system in order to obtain true initial uptake rates in forward-reaction experiments. In addition, it was possible to perform back-exchange experiments and to study the effects of illumination and of preloading the chloroplasts with different substrates on transport. It is shown that the phosphate translocator from mesophyll chloroplasts of maize, a C4 plant, transports inorganic phosphate and phosphorylated C3 compounds in which the phosphate group is linked to the C3 atom (e.g. 3-phosphoglycerate and triose phosphate). The affinities of the transported metabolites towards the translocator protein are about one order of magnitude higher than in mesophyll chloroplasts from the C3 plant, spinach. In contrast to the phosphate translocator from C3-mesophyll chloroplasts, that of C4-mesophyll chloroplasts catalyzes in addition the transport of C3 compounds where the phosphate group is attached to the C2 atom (e.g. 2-phosphoglycerate, phosphoenolpyruvate). The phosphate translocator from both chloroplast types is strongly inhibited by pyridoxal-5-phosphate (PLP), 2,4,6-trinitrobenzenesulfonic acid and 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). In the case of the spinach translocator protein these inhibitors were shown to react with the same amino-acid residue at the substrate binding site, and one molecule of either DIDS or PLP is obviously required per substrate binding site for the inactivation of the translocation process. In the functionally active dimeric translocator protein only one substrate-binding site appears to be accessible at a particular time, indicating that the site might be exposed to each side of the membrane in turn. Using [3H]-H2DIDS for the labelling of maize mesophyll envelopes the radioactivity was found to be associated with two polypeptides of about 29 and 30 kDa. Since Western-blot analysis showed that only the 30 kDa polypeptide reacted with an antiserum directed against the spinach phosphate translocator protein it is suggested that this polypeptide presumably represents the phosphate translocator from maize mesophyll chloroplasts.Abbreviations DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid - PEP phosphoenolpyruvate - 2-,3-PGA 2-,3-phosphoglycerate - PLP pyridoxal-5-phosphate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TNBS 2,4,6-trinitrobenzenesulfonic acid - triose P triose phosphate This work was supported by the Deutsche Forschungsgemeinschaft  相似文献   

9.
T. Hayakawa  S. Kanematsu  K. Asada 《Planta》1985,166(1):111-116
Thylakoid-bound superoxide dismutase (SOD; EC 1.15.1.1) was solubilized by Triton X-100 from spinach and purified to a homogeneous state. The molecular weight of thylakoid-bound SOD was 52000; the enzyme was composed of two equal subunits. Its activity was not sensitive to cyanide and hydrogen peroxide, and the isolated SOD contained Mn, but neither Fe nor Cu. Thus, the thylakoid-bound SOD is a Mn-containing enzyme. The subunit molecular weight of thylakoid Mn-SOD is the highest among Mn-SODs isolated so far, a fact which might reflect its binding to the membranes.  相似文献   

10.
We devised recently a method to trap intact isolated chloroplasts on a solid support consisting of membrane filters made of cellulose nitrate (Cerovi et al., 1987, Plant Physiol. 84, 1249–1251). The addition of alkaline phosphatase to the reaction medium enabled continuous photosynthesis by spinach (Spinacia oleracea L.) chloroplasts to be sustained by hydrolysis of newly produced and exported triose phosphates and recycling of orthophosphate. In this system, simultaneous measurements of chlorophyll fluorescence and oxygen evolution were performed and their dependence on orthophosphate concentration was investigated. Optimal photosynthesis was obtained at a much higher initial orthophosphate concentration (2–4 mM) compared to intact chloroplasts in suspension. Secondary kinetics of chlorophyll fluorescence yield were observed and were shown to depend on the initial orthophosphate concentration.Abbreviations Chl chlorophyll - CSS intact isolated chloroplasts on solid support - ICS intact isolated chloroplasts in suspension - Pi orthophosphate - v rate of O2 evolution - PPFD photosynthetic photon flux density The authors wish to thank Dr. Marijana Plesniar, from the University of Novi Sad, for stimulating discussions. This work was supported by the Fond for Science of the Republic of Serbia. Z.G.C.'s visit to the Robert Hill Laboratory was supported by the British Council and the University of Sheffield.  相似文献   

11.
Starch phosphorylase activity in extracts of spinach or pea leaves and of isolated chloroplasts was determined and separated by electrophoresis in polyacrylamide gels. In spinach leaf extracts, a specific activity of 16 nmol glucose 1-phosphate formed per min per mg protein was found, whereas a lower value (6 nmol per min per mg protein) was observed in preparations of isolated chloroplasts which were about 75% intact. In the spinach leaf extracts two forms of phosphorylase were found; chloroplast preparations almost exclusively contained one of these. In pea leaf extracts the specific activity was 10 nmol glucose 1-phosphate formed per min per mg protein. Three forms of phosphorylase contributed to this activity. Preparations of isolated chloroplasts with an intactness of about 85% exhibited a lower specific activity (5nmol per min per mg protein) and contained two of these three phosphorylase forms.Abbreviations G1P Glucose 1-phosphate - Pi orthophosphate - Tris Tris (hydroxymethyl)aminomethane - MES 2(N-morpholino)ethane sulphonic acid - EDTA ethylenediamine tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

12.
The initial reactions of transitory starch degradation in Spinacia oleracea L. were investigated using an in-vitro system composed of native chloroplast starch granules, purified chloroplast and non-chloroplast forms of phosphorylase (EC 2.4.1.1) from spinach leaves, and -amylase (EC 3.2.1.1) isolated from Bacillus subtilis. Starch degradation was followed by measuring the release of soluble glucans, by determining phosphorylase activity, and by an electron-microscopic evaluation following deep-etching of the starch granules. Starch granules were readily degraded by -amylase but were not a substrate for the chloroplast phosphorylase. Phosphorolysis and glucan synthesis by this enzyme form were strictly dependent upon a preceding amylolytic attack on the starch granules. In contrast, the non-chloroplast phosphorylase was capable of using starch-granule preparations as substrate. Hydrolytic degradation of the starch granules was initiated at the entire particle surface, independently of its size. As a result of amylolysis, soluble glucans were released with a low degree of polymerization. When assayed with these glucans as substrate, the chloroplast phosphorylase form exhibited a higher apparent affinity and a higher reaction velocity compared with the non-chloroplast phosphorylase form. It is proposed that transitory starch degradation in vivo is initiated by hydrolysis; phosphorolysis is most likely restricted to a pool of soluble glucan intermediates.Abbreviations Glc1P Glucose 1-phosphate - Mes 2(N-morpholino)ethanesulfonic acid - Pi Orthophosphate  相似文献   

13.
In recent studies using intact chloroplasts of spinach (Spinacia oleracea L.) to investigate the accumulation of acetyl-CoA produced by the activity of either acetyl-CoA synthetase (EC 6.2.1.1) or the pyruvate-dehydrogenase complex, this product was not detectable. These results in combination with new information on the physiological levels of acetate and pyruvate in spinach chloroplasts (H.-J. Treede et al. 1986, Z. Naturforsch. 41 C, 733–740) prompted a reinvestigation of the incorporation of [1-14C] acetate and [2-14C] pyruvate into fatty acids at physiological concentrations.The K m for the incorporation into fatty acids was about 0.1 mM for both metabolites and thus agreed with the values obtained by H.-J. Treede et al. (1986) for acetyl-CoA synthetase and the pyruvate dehydrogenase complex. However, acetate was incorporated with a threefold higher V max. Saturation for pyruvate incorporation into the fattyacid fraction was achieved only at physiological pyruvate concentrations (<1.0 mM). The diffusion kinetics observed at higher concentrations may be the result of contamination with derivates of the labeled substrate. Competition as well as double-labeling experiments with [3H]acetate and [2-14C]pyruvate support the notion that, at least in spinach, chloroplastic acetate is the preferred substrate for fatty-acid synthesis when both substrates are supplied concurrently (P.G. Roughan et al., 1979 b, Biochem. J. 184, 565–569).Experiments with spinach leaf discs confirmed the predominance of fatty-acid incorporation from acetate. Radioactivity from [1-14C]acetate appeared to accumulate in glycerolipids while that from [2-14C]pyruvate was apparently shifted in favor of the products of prenyl metabolism.Abbreviations Chl chlorophyll - TLC thin-layer chromatography  相似文献   

14.
Hydration-state-responsive proteins link cold and drought stress in spinach   总被引:3,自引:0,他引:3  
Spinach (Spinacia oleracea L.) seedlings exposed to low nonfreezing temperatures (0–10° C) that promote cold acclimation, synthesize a variety cold-acclimation proteins and at the same time acquire a greater ability to withstand cellular dehydration imposed by the freezing of tissue water. Two of these proteins (160 and 85 kDa) become more abundant over time at low temperature. In addition, a small decline in tissue water status from a maximally hydrated state also appears to be associated with an initiation of the accumulation of these proteins at a noninductive temperature. Imposing a severe water stress on young seedlings grown at 25° C by withholding water leads to substantial accumulation of the 160- and 85-kDa proteins, and maximal induction of freezing tolerance. This evidence implies that responses to cold acclimation and water stress involve common mechanisms, and further establishes the linkage of these two proteins with stresses having an osmotic component.Abbreviations ABA abscisic acid - CAP cold-acclimation protein - kDa kilodaltons We thank T. Sinclair and K. Cline for critical reading and discussions, N. Denslow for assistance with protein sequencing methods, and L. Greene, S. Henry for preparing the monoclonal antibodies. The work was made possible by support from the USDA Competitive Grants Program No. 90-37280-5527, the Institute for Food and Agricultural Sciences, and through access to the protein sequencing and hybridoma facilities of the Interdisciplinary Center for Biotechnology Research at the University of Florida. Florida Agricultural Experiment Station Journal Series R-02399.  相似文献   

15.
H. Ekkehard  Mark Stitt 《Planta》1989,179(1):51-60
Spinach leaf discs were floated on methyl-viologen solutions (5–200 nmol·l-1) and the effect on photosynthetic metabolism was then investigated under conditions of saturating CO2. Methyl viologen led to increased non-photochemical quenching, and the ATP/ADP ratio increased from <2 to >10. Comparison of the apparent quantum yield and non-photochemical quenching indicated that these concentrations of methyl viologen were only catalysing a marginal electron flux, and that the decrease in quantum yield was mainly the result of pH-triggered energy dissipation. Similar changes were also obtained after supplying tentoxin to inhibit the chloroplast ATP synthase and increase the energisation of the thylakoids. The photosystem-II acceptor, QA, was monitored by photochemical fluorescence quenching, and became more reduced. In contrast, the activation of NADP-malate dehydrogenase decreased, showing that the acceptor side of photosystem I becomes more oxidised. Similar changes were observed after supplying tentoxin. It is concluded that increased thylakoid energisation can lead to a substantial restriction of linear electron transport. Analysis of metabolite levels showed that glycerate-3-phosphate reduction was imporved, but that there was a large accumulation of triose phosphates and fructose-1,6-bisphosphate. This is the consequence of an inhibition of the regeneration of ribulose-1,5-bisphosphate, caused by inactivation of the stromal fructose-1,6-bisphosphatase and, to a lesser extent, phosphoribulokinase. Methyl viologen also led to inactivation of sucrose-phosphate synthase, and abolished the response of fructose-2,6-bisphosphate to rising rates of photosynthesis. This provides evidence for a primary role of glycerate-3-phosphate in controlling the activity of fructose-6-phosphate, 2-kinase and, thence, the fructose-2,6-bisphosphate concentration as the rate of photosynthesis increases. It is concluded that the very moderate ATP/ADP ratios found in chloroplasts are the results of constraints on the operation of ATP synthase. They can be increased if the thylakoid energisation is increased. However, the increased energisation acts directly or indirectly to disrupt many other aspects of photosynthetic metabolism including linear electron transport, activation of the Calvin cycle, and the control of sucrose and starch synthesis.Abbreviations and symbols Frul,6P2 (Fru1,6Pase) fructose-1,6-bisphosphate(ase) - Fru2,6P, (Fru2,6Pase) fructose-2,6-bisphosphate(-ase) - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - Pi inorganic phosphate - PSI and PSII photosystems I and II - qE high energy' quenching of chlorophyll fluorescence - PGA glycerate-3-phosphate - QA primary stable acceptor of PSII - Ru5P (Ru1,5P2) ribulose-5-phosphate (-1,5-bisphosphate) - SPS sucrose-phosphate synthase - triose P dihydroxyacetone phosphate plus glyceraldehyde-3-phosphate - s apparent quantum yield Dedicated to Professor E. Latzko on the occasion of his 65th birthday  相似文献   

16.
Calcium binding to spinach (Spinacia oleracea L.) stromal proteins was examined by dual-wavelength spectrophotometry using the metallochromic indicator tetramethylmurexide. The data are consistent with the existence of at least two, probably independent, classes of binding sites. The total number of binding sites varied between 90–155 nmol·mg–1 protein with average binding constants of 1.1–2.7·mM–1. Both Mg2+ and La3+ inhibited calcium binding competitively, with average inhibitor constants of 0.26·mM–1 and 39.4·mM–1, respectively; an increase in the potassium concentration up to 50 mM had no effect. In a typical experiment a decrease in pH (7.8 to 7.1) resulted in a decrease in the total number of calcium binding sites from 90 to 59 nmol·mg–1 protein, but in an increase of the average affinity from 2.7 to 4.5·mM–1. Calculations, using these data and those of Gross and Hess (1974, Biochim. Biophys. Acta 339, 334–346) for binding site I of washed thylakoid membranes, showed that the free-Ca2+ concentration in the stroma under dark conditions, pH 7.1, is higher than under light conditions, pH 7.8. The physiological relevance of the observed calcium binding by stromal proteins is discussed.Abbreviations Ca b 2+ bound calcium - Ca f 2+ free calcium  相似文献   

17.
The relationship between phosphate status and photosynthesis in leaves   总被引:19,自引:0,他引:19  
K.-J. Dietz  C. Foyer 《Planta》1986,167(3):376-381
Spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) were grown in hydroponic culture with varying levels of orthophosphate (Pi). When leaves were fed with 20 mmol·l–1 Pi at low CO2 concentrations, a temporary increase of CO2 uptake was observed in Pi-deficient leaves but not in those from plants grown at 1 mmol·l–1 Pi. At high concentrations of CO2 (at 21% or 2% O2) the Pi-induced stimulation of CO2 uptake was pronounced in the Pi-deficient leaves. The contents of phosphorylated metabolites in the leaves decreased as a result of Pi deficiency but were restored by Pi feeding. These results demonstrate that there is an appreciable capacity for rapid Pi uptake by leaf mesophyll cells and show that the effects of long-term phosphate deficiency on photosynthesis may be reversed (at least temporarily) within minutes by feeding with Pi.Abbreviation Pi orthophosphate  相似文献   

18.
Spinach plants (Spinacia oleracea L.) were frost-hardened by cold-acclimation to 1° C or kept in an unhardy state at 20°/14° C in phytotrons. Detached leaves were exposed to temperatures below 0°C. Rates of photosynthetic CO2 uptake by the leaves, recorded after frost treatment, served as a measure of freezing injury. Thylakoid membranes were isolated from frost-injured leaves and their photosynthetic activities tested. Ice formation occurred at about-4° to-5° C, both in unhardened and cold-acclimated leaves. After thawing, unhardened leaves appeared severely damaged when they had been exposed to-5° to-8° C. Acclimated leaves were damaged by freezing at temperatures between-10° to-14° C. The pattern of freezing damage was complex and appeared to be identical in hardened and unhardened leaves: 1. Inactivation of photosynthesis and respiration of the leaves occurred almost simultaneously. 2. When the leaves were partly damaged, the rates of photosynthetic electron transport and noncyclic photophosphorylation and the extent of light-induced H+ uptake by the isolated thylakoids were lowered at about the same degree. The dark decay of the proton gradient was, however, not stimulated, indicating that the permeability of the membrane to-ward protons and metal cations had not increased. 3. As shown by partial reactions of the electron transport system, freezing of leaves predominantly inhibited the oxygen evolution, but photosystem II and photosystem I-dependent electron transport were also impaired. 4. Damage of the chloroplast envelope was indicated by a decline in the percentage of intact chloroplasts found in preparations from injured leaves. The results are discussed in relation to earlier studies on freezing damage of thylakoid membranes occurring in vitro.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenol indophenol - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MES 2(N-morpholino) ethane sulfonic acid  相似文献   

19.
Homogentisate is the precursor in the biosynthesis of -tocopherol and plastoquinone-9 in chloroplasts. It is formed of 4-hydroxyphenylpyruvate of the shikimate pathway by the 4-hydroxyphenylpyruvate dioxygenase. In experiments with spinach the dioxygenase was shown to be localized predominatedly in the chloroplasts. Envelope membranes exhibit the highest specific activity, however, because of the high stromal portion of chloroplasts, 60–80% of the total activity is housed in the stroma. The incorporation of 4-hydroxyphenylpyruvate into 2-methyl-6-phytylquinol as the first intermediate in the tocopherol synthesis by the two-step-reaction: 4-Hydroxyphenylpyruvate Homogentisate 2-Methyl-6-phytylquinol was demonstrated by using envelope membranes. Homogentisate originates directly from 4-hydroxyphenylpyruvate of the shikimate pathway. Additionally, a bypass exists in chloroplasts which forms 4-hydroxyphenylpyruvate from tyrosine by an L-amino-acid oxidase of the thylakoids and in peroxisomes by a transaminase reaction. Former results about the dioxygenase in peroxisomes were verified.  相似文献   

20.
Using an 5-AvaII fragment of the spinach (Spinacia oleracea L.) phosphate translocator cDNA as a probe for a hybridization screening of a pea (Pisum sativum L.) cDNA library we have cloned and sequenced a cDNA clone coding for the phosphate translocator precursor protein from pea chloroplasts. The full-length cDNA clone comprises 42 base pairs (bp) at the 5-non-coding region, a 1206-bp coding region corresponding to a polypeptide of 402 amino-acid residues (relative molecular mass 43 671) and 244 bp at the non-coding 3-region. Determination of the N-terminal sequence of the phosphate translocator from both pea and spinach chloroplasts revealed that the transit peptides consist of 72 and 80 amino-acid residues, respectively. These transit peptides are different from those of other chloroplastic transit peptides in that they both contain an amphiphilic -helix which is located either in close proximity to the processing site in pea or at the N-terminus in spinach. The mature proteins from pea and spinach both contain about 87% identical amino-acid residues and about seven putative membrane-spanning -helices. Some of these -helices have an amphiphilic character and might serve to form a hydrophilic translocation channel through the membrane. The in-vitro synthesized pea precursor protein is directed to the chloroplast and inserted into the chloroplast envelope membrane.Abbreviations bp base pairs - kDa kilodaltons - Mr relative moleculas mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We wish to thank Dr D. Pappin and R. Jakes (AFRC Sequencing Laboratory, Department of Biochemistry, University of Leeds, UK) for performing the N-terminal sequence determinations and are greatful to Dr J. S. Gantt (Botany Department, University of Georgia, Athens, USA) for a pea leaf cDNA library and to Professor J. C. Gray (University of Cambridge, Department of Botany, Cambridge, UK) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Science and Engineering Research Council and the Royal Society. D.L.W. was the recipient of the Royal Society Rosenheim research fellowship and K.F. was supported by a fellowship from the Studienstiftung des deutschen Volkes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号