共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior to the MBT, checkpoints are observed in cell-free egg extracts supplemented with sperm nuclei. These checkpoints depend upon the Xenopus Chk1 (XChk1)-signaling pathway. To understand why Xenopus embryos lack checkpoints, xchk1 was cloned, and its expression was examined and manipulated in Xenopus embryos. Although XChk1 mRNA is degraded at the MBT, XChk1 protein persists throughout development, including pre-MBT cell cycles that lack checkpoints. However, when DNA replication is blocked, XChk1 is activated only after stage 7, two cell cycles prior to the MBT. Likewise, DNA damage activates XChk1 only after the MBT. Furthermore, overexpression of XChk1 in Xenopus embryos creates a checkpoint in which cell division arrests, and both Cdc2 and Cdk2 are phosphorylated on tyrosine 15 and inhibited in catalytic activity. These data indicate that XChk1 signaling is intact but blocked upstream of XChk1 until the MBT. 相似文献
3.
Expression of XMyoD protein in early Xenopus laevis embryos. 总被引:4,自引:0,他引:4
A monoclonal antibody specific for Xenopus MyoD (XMyoD) has been characterized and used to describe the pattern of expression of this myogenic factor in early frog development. The antibody recognizes an epitope close to the N terminus of the products of both XMyoD genes, but does not bind XMyf5 or XMRF4, the other two myogenic factors that have been described in Xenopus. It reacts in embryo extracts only with XMyoD, which is extensively phosphorylated in the embryo. The distribution of XMyoD protein, seen in sections and whole-mounts, and by immunoblotting, closely follows that of XMyoD mRNA. XMyoD protein accumulates in nuclei of the future somitic mesoderm from the middle of gastrulation. In neurulae and tailbud embryos it is expressed specifically in the myotomal cells of the somites. XMyoD is in the nucleus of apparently every cell in the myotomes. It accumulates first in the anterior somitic mesoderm, and its concentration then declines in anterior somites from the tailbud stage onwards. 相似文献
4.
Background
Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.Methodology and Principal Findings
To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Conclusion and Significance
Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest. 相似文献5.
IQGAP2 is required for the cadherin-mediated cell-to-cell adhesion in Xenopus laevis embryos 总被引:1,自引:0,他引:1
We have previously identified two Xenopus homologues of mammalian IQGAP, XIQGAP1 and XIQGAP2, which show high homology with human IQGAP1 and IQGAP2, respectively. In order to clarify function of the IQGAPs during development, we performed knock-down experiments on the XIQGAPs in Xenopus laevis embryos by microinjecting morpholino antisense oligonucleotides into blastomeres at the two-cell stage. Suppression of XIQGAP2 expression caused ectodermal lesions in the neurula stage embryos. While suppression of XIQGAP1 expression alone did not show any obvious defect in subsequent developmental processes, simultaneous knock-down of both XIQGAPs caused the ectodermal lesions during the gastrula stage. Histological studies suggested that a loss of cell adhesion in the ectodermal and mesodermal layers of the embryos caused the defect. The suppression of XIQGAP2 expression resulted in loss of actin filaments, beta-catenin, and XIQGAP1 from cell borders in the ectoderm, although it did not affect the expression levels of these proteins. Furthermore, it inhibited Ca(2+)-induced reaggregation of embryonic cells which had been dissociated in a Ca(2+)/Mg(2+)-free medium. These results strongly suggest that XIQGAP2 is crucial for cell adhesion during early development in Xenopus. 相似文献
6.
7.
Elevation of the incubation temperature of Xenopus laevis neurulae from 22 to 33-35 degrees C induced the accumulation of heat shock protein (hsp) 70 mRNA (2.7 kilobases (kb)) and a putative hsp 87 mRNA (3.2 kb). While constitutive levels of both hsp mRNAs were detectable in unfertilized eggs and cleavage-stage embryos, heat-induced accumulation was not observed until after the mid-blastula stage. Exposure of Xenopus laevis embryos to other stressors, such as sodium arsenite or ethanol, also induced a developmental stage-dependent accumulation of hsp 70 mRNA. To characterize the effect of temperature on hsp 70 mRNA induction, neurulae were exposed to a range of temperatures (27-37 degrees C) for 1 h. Heat-induced hsp 70 mRNA accumulation was first detectable at 27 degrees C, with relatively greater levels at 30-35 degrees C and lower levels at 37 degrees C. A more complex effect of temperature on hsp 70 mRNA accumulation was observed in a series of time course experiments. While continuous exposure of neurulae to heat shock (27-35 degrees C) induced a transient accumulation of hsp 70 mRNA, the temporal pattern of hsp 70 mRNA accumulation was temperature dependent. Exposure of embryos to 33-35 degrees C induced maximum relative levels of hsp 70 mRNA within 1-1.5 h, while at 30 and 27 degrees C peak hsp 70 mRNA accumulation occurred at 3 and 12 h, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos
Ventral ectodermal explants taken from early gastrula embryos of Xenopus laevis were artificially stretched either by two opposite concentrated forces or by a distributed force applied to the internal
explant’s layer. These modes of stretching reflect different mechanical situations taking place in the normal development.
Two main types of kinematic response to the applied tensions were detected. First, by 15 min after the onset of concentrated
stretching a substantial proportion of the explant’s cells exhibited a concerted movement towards the closest point of the
applied stretching force. We define this movement as tensotaxis. Later, under both concentrated and distributed stretching,
most of the cell’s trajectories became reoriented perpendicular to the stretching force, and the cells started to intercalate
between each other, both horizontally and vertically. This was accompanied by extensive elongation of the outer ectodermal
cells and reconstruction of cell-cell contacts. The intercalation movements led first to a considerable reduction in the stretch-induced
tensions and then to the formation of peculiar bipolar ”embryoid” shapes. The type and intensity of the morphomechanical responses
did not depend upon the orientation of a stretching force in relation to the embryonic axes. We discuss the interactions of
the passive and active components in tension-dependent cell movements and their relations to normal morphogenetic events.
Received: 26 April 1999 / Accepted: 30 August 1999 相似文献
9.
10.
Progesterone-induced maturation of Xenopus oocytes is a well known example of nongenomic signaling by steroids; however, little is known about the early signaling events involved in this process. Previous work has suggested that G proteins and G protein-coupled receptors may be involved in progesterone-mediated oocyte maturation as well as in other nongenomic steroid-induced signaling events. To investigate the role of G proteins in nongenomic signaling by progesterone, the effects of modulating Galpha and Gbetagamma levels in Xenopus oocytes on progesterone-induced signaling and maturation were examined. Our results demonstrate that Gbetagamma subunits, rather than Galpha, are the principal mediators of progesterone action in this system. We show that overexpression of Gbetagamma inhibits both progesterone-induced maturation and activation of the MAPK pathway, whereas sequestration of endogenous Gbetagamma subunits enhances progesterone-mediated signaling and maturation. These data are consistent with a model whereby endogenous free Xenopus Gbetagamma subunits constitutively inhibit oocyte maturation. Progesterone may induce maturation by antagonizing this inhibition and therefore allowing cell cycle progression to occur. These studies offer new insight into the early signaling events mediated by progesterone and may be useful in characterizing and identifying the membrane progesterone receptor in oocytes. 相似文献
11.
Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes 下载免费PDF全文
Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels. 相似文献
12.
FGF signaling has been implicated in germ layer formation and axial determination. An antibody specific for the activated form of mitogen-activated protein kinase (MAPK) was used to monitor FGF signaling in vivo during early Xenopus development. Activation of MAPK in young embryos is abolished by injection of a dominant negative FGF receptor (XFD) RNA, suggesting that MAPK is activated primarily by FGF in this context. A transition from cytoplasmic to nuclear localization of activated MAPK occurs in morula/blastula stage embryo animal and marginal zones coinciding with the proposed onset of mesodermal competence. Activated MAPK delineates the region of the dorsal marginal zone before blastopore formation and persists in this region during gastrulation, indicating an early role for FGF signaling in dorsal mesoderm. Activated MAPK was also found in posterior neural tissue from late gastrulation onward. Inhibition of FGF signaling does not block posterior neural gene expression (HoxB9) or activation of MAPK; however, inhibition of FGF signaling does cause a statistically significant decrease in the level of activated MAPK. These results point toward the involvement of other receptor tyrosine kinase signaling pathways in posterior neural patterning. 相似文献
13.
Changes in the polysome content of developing Xenopus laevis embryos 总被引:13,自引:0,他引:13
H R Woodland 《Developmental biology》1974,40(1):90-101
A method for preparing polysomes from all embryonic stages of Xenopus laevis is described. In the oocyte only about 1–2% of the total ribosomes are present in polysomes, the remainder being a developmental reserve. Upon conversion to an egg the polysome content rises by up to 3-fold, and by about a further 2-fold after fertilization. There is only a small further increase during cleavage, but by the tailbud stage, when organogenesis begins, there is a more rapid rise. Most of the ribosomes are incorporated into polysomes by stage 42, shortly before feeding begins.At very early stages, the changes in polysome content seem to mirror the changes in protein synthesis. At later stages the polysome contents reported here provide the only available guide to changes in the rate of protein synthesis. Judged by polysome content, the stage 42 tadpole seems to make protein about 20 times faster than the unfertilized egg, though it contains very few more ribosomes. The relationship between polysome content and the synthesis of various types of RNA is discussed. 相似文献
14.
15.
16.
A tyrosine-phosphorylated protein of 33 kDa is shown to be present in the solubilized yolk fraction of Xenopus laevis oocytes, eggs, and early embryos. The phosphoprotein is lipovitellin 2 as demonstrated by immunoprecipitation and mass spectrometry studies, and is termed pp33/LV2. Sub-cellular fractionation and immunoblotting studies demonstrate that pp33/LV2 is stably present in the Triton X-100-resistant and SDS-soluble yolk fractions during oogenesis, oocyte maturation, and early embryogenesis. From after the swimming tadpole stages (stage 39~), however, it becomes partly soluble to Triton X-100-containing buffer and all disappear thereafter (stage 48~49). In vitro enzyme assays with the use of the tyrosine phosphatase LAR and the tyrosine kinase Src demonstrate the reversible nature of the tyrosine phosphorylation of pp33/LV2. Microinjection studies demonstrate that the solubilized yolk fractions, but not those immunodepleted of pp33/LV2 or those pretreated with LAR, inhibit progesterone- or insulin-induced oocyte maturation. A pp33/LV2-like protein seems to present in two Xenopus subspecies, one other frog species, and two fish species, but not in other amphibian species, such as newt and salamander. These results suggest that LV2, in its tyrosine-phosphorylated form, serves in a cellular function in a species-specific manner, but the mechanism is still unknown. 相似文献
17.
18.
Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers 总被引:1,自引:0,他引:1
This study examines the pathways of migration followed by neural crest cells in Xenopus embryos using two recently described cell marking techniques. The first is an interspecific chimera created by grafting Xenopus borealis cells into Xenopus laevis hosts. The cells of these closely related species can be distinguished by their nuclear dimorphism. The second type of marker is created by microinjection of lysinated dextrans into fertilized eggs which can then be used for intraspecific grafting. These recently developed fluorescent dyes are fixable and identifiable in both living and fixed embryos. After grafting labeled donor neural tubes into unlabeled host embryos, the distribution of neural crest cells at various stages after grafting was used to define the pathways of neural crest migration. To control for possible grafting artifacts, fluorescent lysinated dextran was injected into a single blastomere which gives rise to a large number of neural crest cells, thereby labeling the neural crest without grafting. By all three techniques, Xenopus neural crest cells were observed along two predominant pathways in the trunk. The majority of neural crest cells were observed along a "ventral" route, between the neural tube and somite, the notochord and somite, and along the dorsal mesentery. A second group of neural crest cells was observed "dorsally" where they populated the dorsal fin. A third minor "lateral" pathway was observed primarily in borealis/laevis chimerae and in blastomere-injected embryos; some neural crest cells were observed underneath the ectoderm lateral to the neural tube. Along the rostrocaudal axis, neural crest cells were not continuously distributed but were primarily located across from the caudal two-thirds of the somite. Fewer than 3% of the neural crest cells were observed across from the rostral third of each somite. When grafted to ventral locations, neural crest cells were not able to migrate dorsally but migrated laterally along the dorsal mesentery. Labeled neural crest cells gave rise to cells of the spinal, sympathetic, and enteric ganglia as well as to adrenal chromaffin cells, Schwann cells, pigment cells, mesenchymal cells of the dorsal fin, and some cells in the integuments and in the region of the pronephros. These results show that the neural crest migratory pathways in Xenopus differ from those in the avian embryo. In avians NC cells migrate as a closely associated sheet of cells while in Xenopus they migrate as individual cells. Both species exhibit a metamerism in the neural crest cell distribution pattern along the rostrocaudal axis.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
19.
Notch signaling is involved in cell fate determination and is evolutionally highly conserved in vertebrates and invertebrates. Mastermind is a nuclear protein which participates in Notch signaling and is involved in direct transactivation of target genes. Here we analyzed the expression and the function of Xenopus mastermind1 (XMam1) in the process of primary neurogenesis. XMam1 is 3,425 bp and encodes 1,139 amino acids. Overall, Mastermind proteins consist of a basic domain, two acidic domains and a glutamine-rich domain, which are highly conserved among species. The ubiquitous expression of XMam1 was observed in both maternal and zygotic stages. Whole-mount in situ hybridization showed that XMam1 mRNA was present in the ectoderm by the gastrula stage and localized at the anterior neural region in the neurula stage. Thereafter, XMam1 expression was restricted to the eye and otic vesicle in the tailbud-stage embryo. XMaml overexpression caused the repression of primary neural formation. The truncated form of XMam1 (lacking the C-terminus of XMam1; XMam1deltaC) led to excess formation of primary neurons. Furthermore, XMam1deltaC strongly repressed XESR-1 transactivation. These results show that XMaml is involved in primary neurogenesis by way of Notch signaling and is an essential component for transactivation of XESR-1 in Xenopus laevis embryos. 相似文献