首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quercetin and 2-Methoxyestradiol (2-ME) are promising anti-cancer substances. Our previous in vitro study showed that quercetin synergized with 2-Methoxyestradiol exhibiting increased antiproliferative and proapoptotic activity in both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cell lines. In the present study, we determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer.  相似文献   

2.
A new sulfated polyoxide steroid (20S)-3??,6??,20-trihydroxi-5??-cholest-9(11)-ene 3-sulfate (sodium salt) named mithrotriol was isolated from the Pacific starfish Mithrodia clavigera. Additionally, six previously known compounds were isolated and identified including glycosides echinasteroside B, granulatoside A, linckoside K, and forbeside L, as well as sulfates of thornasterol A and cholesterol. The structure of mithrotriol was elucidated by NMR (1H, 13C, DEPT, COSY-45, NOESY, HSQC, and HMBC) and massspectrometry. Minimal inhibitory concentrations were determined for the isolated compounds that demonstrated cytotoxic activity in human melanoma cells SK-MEL-28, SK-MEL-5, and RPMI-7951.  相似文献   

3.
Fluorinated aromatic compounds are significant environmental pollutants, and microorganisms play important roles in their biodegradation. The effect of fluorine substitution on the transformation of fluorobiphenyl in two bacteria was investigated. Pseudomonas pseudoalcaligenes KF707 and Burkholderia xenovorans LB400 used 2,3,4,5,6-pentafluorobiphenyl and 4,4??-difluorobiphenyl as sole sources of carbon and energy. The catabolism of the fluorinated compounds was examined by gas chromatography?Cmass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), and revealed that the bacteria employed the upper pathway of biphenyl catabolism to degrade these xenobiotics. The novel fluorometabolites 3-pentafluorophenyl-cyclohexa-3,5-diene-1,2-diol and 3-pentafluorophenyl-benzene-1,2-diol were detected in the supernatants of biphenyl-grown resting cells incubated with 2,3,4,5,6-pentafluorobiphenyl, most likely as a consequence of the actions of BphA and BphB. 4-Fluorobenzoate was detected in cultures incubated with 4,4??-difluorobiphenyl and 19F NMR analysis of the supernatant from P. pseudoalcaligenes KF707 revealed the presence of additional water-soluble fluorometabolites.  相似文献   

4.
Background: Hypertriglyceridemia has been shown to be one of the risk factors for prostate cancer. In this study, we investigated the effect of remnant lipoproteins on cell growth in prostate cancer cell lines. Methods: Remnant lipoproteins were isolated as remnant like particles (RLP) from human plasma. We used RLP for TG-rich lipoproteins and low density lipoproteins (LDL) for cholesterol-rich lipoproteins respectively and examined the effect of lipoproteins on proliferation of PC-3 and LNCaP cells using MTS assays. Moreover, we studied the effect of RLP and LDL treatment on the regulation of lipoprotein receptors in prostate cancer cells to investigate the relationship between lipoprotein-induced cell proliferation and lipoprotein receptor expression using real-time PCR, Western blotting assays and siRNA. Results: RLP effectively induced PC-3 cell proliferation more than LDL, whereas both RLP and LDL could not induce LNCaP cell proliferation except at a higher concentration of RLP. LDL receptor (LDLr) was expressed in both prostate cancer cells but there was a sharp difference of sterol regulation between two cells. In PC-3 cells, LDL decreased the LDLr expression in some degree, but RLP did not. Meanwhile LDLr expression in LNCaP was easily downregulated by RLP and LDL. Blocking LDLr function significantly inhibited both RLP- and LDL-induced PC-3 cell proliferation. Conclusions: This study demonstrated that RLP-induced PC-3 cell proliferation more than LDL; however, both RLP and LDL hardly induced LNCaP cell proliferation. The differences of proliferation by lipoproteins might be involved in the regulation of LDLr expression.  相似文献   

5.
6.
Cellular prostatic acid phosphatase (cPAcP), an authentic tyrosine phosphatase, is proposed to function as a negative growth regulator of prostate cancer (PCa) cells in part through its dephosphorylation of ErbB-2. Nevertheless, the direct interaction between cPAcP and ErbB-2 has not been shown nor the specific dephosphorylation site of ErbB-2 by cPAcP. In this report, our data show that the phosphorylation level of ErbB-2 primarily at Tyr1221/2 correlates with the growth rate of both LNCaP and MDA PCa2b human PCa cells. Further, cPAcP reciprocally co-immunoprecipitated with ErbB-2 in a non-permissive growth condition. Expression of wild type cPAcP, but not inactive mutant, by cDNA in cPAcP-null LNCaP C-81 cells results in decreased tyrosine phosphorylation of ErbB-2 including Tyr1221/2. Concurrently, Tyr317 phosphorylation of p52Shc, proliferating cell nuclear antigen expression, and cell growth are decreased in these cells. Conversely, decreased cPAcP expression by short hairpin RNA in LNCaP C-33 cells was associated with elevated phosphorylation of ErbB-2 initially at Tyr1221/2. Its downstream p52Shc, ERK1/2, Akt, Src, STAT-3, and STAT-5 were activated, and cell proliferation, proliferating cell nuclear antigen, and cyclin D1 expression were increased. Stable subclones of C-33 cells by small interfering PAcP had elevated Tyr1221/2 phosphorylation of ErbB-2 and exhibited androgen-independent growth and increased tumorigenicity in xenograft female animals. In summary, our data together indicate that in prostate epithelia, cPAcP interacts with and dephosphorylates ErbB-2 primarily at Tyr1221/2 and hence blocks downstream signaling, leading to reduced cell growth. In PCa cells, decreased cPAcP expression is associated with androgen-independent cell proliferation and tumorigenicity as seen in advanced hormone-refractory prostate carcinomas.  相似文献   

7.
Immunoglobulin G (IgG) has been implicated in the progression of various cancers. This study explored the role of IgG in the proliferation, apoptosis, cell cycle and in vitro invasive properties of LNCaP prostate cancer cells. We used IGHG1 small interfering RNA to silence IgG1 expression in LNCaP cells. The efficacy of IgG1 gene knockdown was confirmed using qPCR and western blotting. The colony formation, proliferation, migration and invasion abilities of LNCaP cells after transfection were assessed using colony-forming, flow cytometry and transwell assays. The expressions of PCNA and caspase-3 proteins in LNCaP cells after transfection were detected with immunofluorescence staining and western blotting. IgG1 silencing significantly decreased the colony formation, survival, cell cycle progression, migration and invasion of LNCaP cells (p?<?0.05). IgG1 silencing also reduced the amount of the proliferation marker PCNA and induced formation of the apoptotic marker caspase-3 (p?<?0.05). Our results show that IgG1 produced by LNCaP cells confers advantages for tumor cell survival, proliferation, migration and invasion, suggesting that IgG1 is a potential target for prostate cancer treatment.  相似文献   

8.
Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40) containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose) polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA) and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids composition from E. longifolia promotes anti-prostate cancer activities in LNCaP human prostate cancer cells.  相似文献   

9.
Aim of the studyRecently, Tinospora cordifolia (TC) was shown to affect prostate growth in rats. It is not known whether this is a direct effect of TC or whether it is induced by altered hormone release. To investigate the actions of TC on the prostate, human LNCaP cells were exposed to an ethanolic extract of TC.Materials and MethodsLNCaP cells were incubated with the test substances for 48 h. Proliferation was measured by MTT test and prostate-specific antigen (PSA) secretion was determined with ELISA.ResultsTC showed a dose-dependent stimulation of proliferation of LNCaP cells. Co-incubation with the anti-androgen flutamide (FLU) reversed the TC-induced stimulation of PSA secretion.ConclusionsThe reference compound dihydrotestosterone (DHT) caused a significant increase of growth of LNCaP cells. Similarly, TC stimulated proliferation of these prostate cells. The anti-androgen FLU reversed the increase of PSA release caused by either DHT or TC. Thus, we suggest that TC may contain androgenic compounds, which appear to act via androgen receptor (AR).  相似文献   

10.
Despite well known oncogenic function of G1-S cell-cycle progression, cyclin D2 (CCND2) is often silenced epigenetically in prostate cancers. Here we show that CCND2 has an inhibitory potential on the proliferation of androgen receptor (AR)-dependent prostate cancer LNCaP cells. Forced expression of CCND2 suppressed the proliferative ability and induced cell death in LNCaP cells in a cdk-independent manner. Knocking down CCND2 restored the proliferation of LNCaP subclones with relatively high CCND2 expression and low proliferative profiles. Immunoprecipitation using deletion mutants of CCND2 indicated that a central domain of CCND2 is required for binding to AR. A deletion mutant lacking the central domain failed to hinder LNCaP cells. Collectively, our results indicated that CCND2 inhibits cell proliferation of AR-dependent prostate cancer through the interaction with AR. Our study suggests that restoration of CCND2 expression potentially prevents the carcinogenesis of prostate cancer, which is mostly AR-dependent in the initial settings.  相似文献   

11.
12.
Six new cucurbitane-type triterpenoids (16), together with two known analogues (7 and 8) were isolated from the aerial parts of Momordica charantia L. The structures of new compounds were identified as cucurbita-6,24-dien-3β,23-diol-19,5β-olide (1), (19R)-5β,19-epoxy-19-methoxycucurbita-6,24-dien-3β,23-diol (2), (19S)-5β,19-epoxy-19-methoxycucurbita-6,24-dien-3β,23-diol (3), (19R)-5β,19-epoxy-19-isopropoxycucurbita-6,24-dien-3β,23-diol (4), 3β,23-dihydroxy-5-methoxycucurbita-6,24-dien-19-al (5) and (19R)-7β,19-epoxy-19-methoxycucurbita-5,24-dien-3β,23-diol (6), by extensive MS, 1D and 2D NMR spectroscopic technologies. This is the first report of the isolation of tetracyclic triterpenoids possessing a 7β,19-epoxy system, viz., 6, from M. charantia L.  相似文献   

13.
Two isoforms of sphingosine kinase, SK1 and SK2, catalyze the formation of the bioactive lipid sphingosine 1-phosphate (S1P) in mammalian cells. We have previously shown that treatment of androgen-sensitive LNCaP prostate cancer cells with a non-selective SK isoform inhibitor, 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi), induces the proteasomal degradation of SK1. This is concomitant with a significant increase in C22:0-ceramide and sphingosine levels and a reduction in S1P levels, resulting in the apoptosis of LNCaP cells. In contrast, we show here that a SK2-selective inhibitor, (R)-FTY720 methyl ether (ROME), increases sphingosine and decreases S1P levels but has no effect on ceramide levels and does not induce apoptosis in LNCaP cells. We also show that several glycolytic metabolites and (R)-S-lactoylglutathione are increased upon treatment of LNCaP cells with SKi, which induces the proteasomal degradation of c-Myc. These changes reflect an indirect antagonism of the Warburg effect. LNCaP cells also respond to SKi by diverting glucose 6-phosphate into the pentose phosphate pathway to provide NADPH, which serves as an antioxidant to counter an oxidative stress response. SKi also promotes the formation of a novel pro-apoptotic molecule called diadenosine 5′,5′′′-P1,P3-triphosphate (Ap3A), which binds to the tumor suppressor fragile histidine triad protein (FHIT). In contrast, the SK2-selective inhibitor, ROME, induces a reduction in some glycolytic metabolites and does not affect oxidative stress. We conclude that SK1 functions to increase the stability of c-Myc and suppresses Ap3A formation, which might maintain the Warburg effect and cell survival, while SK2 exhibits a non-overlapping function.  相似文献   

14.
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on prostate cancer cells, we assayed the effect of ergosterol peroxide and (22E)-ergosta-7,22-dien-5α-hydroxy-3,6-dione, a semisynthetic compound, against androgen-sensitive (LNCaP) and androgen-insensitive (DU-145) human prostate cancer cells. Our results indicate that after 72 h of incubation, ergosterol peroxide and (22E)-ergosta-7,22-dien-5α-hydroxy-3,6-dione at micromolar concentrations exhibited an inhibitory effect on LNCaP and DU-145 cell growth (MTT assay), but the semisynthetic compound was the most active. In addition, our results indicate that apoptotic cell demise is induced in LNCaP and DU-145 cells. In fact, a significant increase of caspase-3 activity, not correlated to LDH release, marker of membrane breakdown, was observed in both cell lines treated with ergosterol peroxide and the semisynthetic compound. With respect to genomic DNA damage, determined by COMET and TUNEL assays, the results obtained show a significant increase in DNA fragmentation when compared with the untreated control.In conclusion, the results obtained in this study, demonstrating that ergosterol peroxide and (22E)-ergosta-7,22-dien-5α-hydroxy-3,6-dione attenuate the growth of prostate cells, at least in part, triggering an apoptotic process, permit to confirm the use of mushrooms as origin of compounds to be used as novel therapeutic agents for prostate cancer treatment, or as models for molecules more active and selective.  相似文献   

15.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

16.
Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.  相似文献   

17.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

18.

Background

The cyclin-dependent kinase inhibitor p27 is a putative tumor suppressor that is downregulated in the majority of human prostate cancers. The mechanism of p27 down-regulation in prostate cancers in unknown, but presumably involves increased proteolysis mediated by the SCFSKP2 ubiquitin ligase complex. Here we used the human prostate cancer cell line LNCaP, which undergoes G1 cell cycle arrest in response to androgen, to examine the role of the SKP2 F-box protein in p27 regulation in prostate cancer.

Results

We show that androgen-induced G1 cell cycle arrest of LNCaP cells coincides with inhibition of cyclin-dependent kinase 2 activity and p27 accumulation caused by reduced p27 ubiquitylation activity. At the same time, androgen decreased expression of SKP2, but did not affect other components of SCFSKP2. Adenovirus-mediated overexpression of SKP2 led to ectopic down-regulation of p27 in asynchronous cells. Furthermore, SKP2 overexpression was sufficient to overcome p27 accumulation in androgen arrested cells by stimulating cellular p27 ubiquitylation activity. This resulted in transient activation of CDK2 activity, but was insufficient to override the androgen-induced G1 block.

Conclusions

Our studies suggest that SKP2 is a major determinant of p27 levels in human prostate cancer cells. Based on our in vitro studies, we suggest that overexpression of SKP2 may be one of the mechanisms that allow prostate cancer cells to escape growth control mediated by p27. Consequently, the SKP2 pathway may be a suitable target for novel prostate cancer therapies.  相似文献   

19.
S. Shimoda 《Photosynthetica》2012,50(3):387-394
Photosynthetic parameters and leaf carbon isotope composition (??13C) in contrasting rice genotypes in relation to supplemental nitrogen (N) application and water management during the grain-filling period were compared. The changes in stomatal conductance (g s) and ratio of intercellular to ambient CO2 mole fraction (C i/C a) depended on the leaf nitrogen concentration (leaf N) in both ??Hinohikari?? (temperate japonica genotype) and ??IR36?? (indica genotype). In ??Hinohikari??, ??13C reflects photosynthetic gas exchange during the grain-filling period, which is indicated by the significant response of ??13C to leaf N. In contrast, in ??IR36?? ??13C did not depend on leaf N. This varietal difference in ??13C to leaf N can be attributed to a difference in the timing of leaf senescence. In ??IR36??, leaf N and photosynthetic parameters decreased more rapidly, indicating earlier senescence and a shorter grain-filling period in comparison with ??Hinohikari??. The significant increase in shoot dry mass in ??Hinohikari?? resulting from supplemental N application, compared with nonsignificant effect observed in ??IR36??, suggests that the timing of senescence in relation to the grainfilling period has a preponderant influence on productivity.  相似文献   

20.
5α-Androstane-3α,17β-diol (3α-diol) is reduced from the potent androgen, 5α-dihydrotestosterone (5α-DHT), by reductive 3α-hydroxysteroid dehydrogenases (3α-HSDs) in the prostate. 3α-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5α-DHT. However, 3α-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3α-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3α-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3α-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3α-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3α-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3α-HSD expression are significantly elevated in localized and advanced prostate cancer, 3α-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号