首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Previous work has shown that increased endocytotic and lysosomal activities occur in the endplate region of denervated skeletal muscle fibres. This, however, does not engage all fibres of a muscle at a given time after denervation. The present study was carried out in order to determine if both type I (slow) and type II (fast) muscle fibres can react to denervation by increased endocytotic and lysosomal activities. Uptake of horseradish peroxidase as a marker for endocytosis was studied in conjunction with acid phosphatase staining for lysosomal activity in type I and type II fibres of the denervated mouse hemidiaphragm. Fibre typing was performed using a monoclonal antibody against fast skeletal myosin and by adenosine triphosphatase staining. The results show that increased endocytosis and lysosomal activation occur in both type I and type II fibres after denervation.  相似文献   

2.
Previous work has shown that increased endocytotic and lysosomal activities occur in the endplate region of denervated skeletal muscle fibres. This, however, does not engage all fibres of a muscle at a given time after denervation. The present study was carried out in order to determine if both type I (slow) and type II (fast) muscle fibres can react to denervation by increased endocytotic and lysosomal activities. Uptake of horseradish peroxidase as a marker for endocytosis was studied in conjunction with acid phosphatase staining for lysosomal activity in type I and type II fibres of the denervated mouse hemidiaphragm. Fibre typing was performed using a monoclonal antibody against fast skeletal myosin and by adenosine triphosphatase staining. The results show that increased endocytosis and lysosomal activation occur in both type I and type II fibres after denervation.  相似文献   

3.
D Goldman  J Staple 《Neuron》1989,3(2):219-228
In adult vertebrate skeletal muscle acetylcholine receptors are localized to the neuromuscular junction. Upon denervation, this distribution changes, with new receptors appearing in extrajunctional regions of the muscle fiber. The location of acetylcholine receptors in innervated or denervated muscle may result, in part, from the distribution of their RNAs. This was tested by assaying for receptor RNAs in junctional and extrajunctional regions of innervated and denervated rat soleus muscle using in situ hybridization and RNAase protection assays. These experiments showed alpha, beta, and delta subunit RNAs concentrated beneath the endplates of innervated muscle fibers. Following denervation, there was an unequal distribution of receptor RNAs along the muscle fiber, with highest levels occurring in extrajunctional regions near the endplate. These data are consistent with a nonuniform pattern of gene expression in adult skeletal muscle fibers.  相似文献   

4.
The secretion of proteins labelled by incorporation of radioactive amino acids was studied in innervated and 10 to 13-day-denervated mouse skeletal muscle. The secretion of 3H-leucine-labelled proteins, expressed per mg muscle wet weight, increased after denervation, and the kinetics of the secretory process was also altered in denervated muscle. Separation of secreted 35S-methionine-labelled proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by autoradiography revealed some denervation-induced alterations in the pattern of secreted proteins. The secretion from both innervated and denervated muscle was highly temperature sensitive and was reversibly inhibited by brefeldin A, a drug that blocks forward membrane transport from the endoplasmic reticulum/Golgi apparatus. This drug was also found to inhibit the uptake of fluorescein isothiocyanate-labelled dextran in denervated muscle but had no effect on the endocytotic activity of innervated muscle. This lends support to the hypothesis that the increased endocytotic activity in denervated muscle is coupled to a high secretory activity.Abbreviations BF A Brefeldin A - dpm Disintegrations per minute - EDL extensor digitorum longus - FITC fluorescein isothiocyanate - LDH lactate dehydrogenase - SDS-P AGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

5.
The in vitro uptake of [3H]inulin and horseradish peroxidase (HRP) has been studied in innervated and 6 days denervated extensor digitorum longus muscle of the mouse. Both markers were taken up at a higher rate in denervated muscle. The increase in uptake after denervation was, however, larger for HRP than for [3H]inulin. After 2 h incubation at 37 degrees C, pH 7.3, in the presence of equimolar concentrations of HRP and [3H]inulin (approx. 2.1 microM), the uptake of HRP was approx. 8 times as great as the uptake of [3H]inulin in the same innervated muscles. In denervated muscle the HRP uptake was approx. 19 times as great as the [3H]inulin uptake in the same muscles. Various possible explanations of these differences in uptake have been considered and tested experimentally. [3H]Inulin uptake in skeletal muscle has previously been shown to obey bulk kinetics. The present investigation shows the HRP uptake to obey saturation kinetics. The HRP uptake shows dependency on divalent cations and is reduced if incubation is carried out at pH 6.4. The uptake of HRP, when used at a low, non-saturating concentration (10 micrograms/ml approx. 0.25 microM), is inhibited greater than or equal to 60% by yeast mannan (0.1 mg/ml), ribonuclease B (0.1 mg/ml, approx. 7.4 microM), mannose (30 mM), monodansylcadaverine (1 mM), chloroquine (100 microM), trifluoperazine (25 microM) or maleic acid (2 mM). It is concluded that HRP is taken up in innervated and denervated skeletal muscle by a process of receptor-mediated endocytosis and that this uptake is under neurotrophic control.  相似文献   

6.
《Molecular membrane biology》2013,30(1-2):131-157
α-Bungarotoxin (BuTX; 5 μg/ml) completely blocked the endplate potential and extrajunctional acetylcholine (ACh) sensitivity of surface fibers in normal and chronically denervated mammalian muscles, respectively, in about 35 min. A 0.72 ± 0.033 mV amplitude endplate potential returned in normal muscle fibers after 6.5 hr. of washout of α-BuTX, and an ACh sensitivity of 41.02 ± 3.95 mV/nC was recorded in denervated muscle after 6.5 hr of wash (control being 1215 ± 197 mV/nC). A two-step reaction of BuTX with binding sites which may allosterically interact is postulated.

Several pharmacologic differences were noted between the ACh receptors at the normal endplate and those appearing extrajunctionally following denervation. In normal innervated muscles exposed to BuTX in the presence of 20 μM carbamylcholine or decamethonium, washout of both drugs restored twitch to control levels within 2 hr. Endplate potentials large enough to initiate action potentials were also recorded in most surface fibers. In contrast, these agents, in much higher concentrations (50 μM), were almost ineffective in preventing BuTX blockade of ACh sensitivity in denervated muscle. Hexamethonium (10 and 50 mM) depressed neuromuscular transmission and blocked the action of BuTX in normal muscle in a dose-dependent fashion. On the extrajunctional receptors, hexamethonium (50 mM) was ineffective in protecting against BuTX. We may conclude that at the normal endplate region there are two distinct populations of ACh receptors, both of which react with cholinergic ligands and BuTX, but that a small population (representing ± 1% of the total) reacts with BuTX reversibly. Our findings further suggest a clear distinction between ACh receptors located at the normal endplate region and those of the extrajunctional region of the chronically denervated mammalian muscle.  相似文献   

7.
1. From denervation studies the trophic influence of the motor nerve on the muscle cell is well documented while little is known about the influence of the muscle on the nerve. Sectioning the axon invariably destroys the nerve terminals and produces nerve degeneration products which themselves may affect nerve and muscle properties. With regard to those difficulties we believe that the botulinal neurotoxins (BoTx) are valuable complements to denervation since they selectively interrupt impulse transmission across the synapse without damaging its morphology. 2. Paralysis of mouse or rat skeletal muscle in vivo with BoTx type A causes marked growth of motor nerve terminals. The sprouting terminals are rich in large dense-core synaptic vesicles containing various neuropeptides and they spontaneously release large quanta of ACh. Thus, it appears that paralysis by BoTx is a strong stimulus for motor nerve growth and the delivery of "trophic" substances to the nerve terminals. 3. Postsynaptically, in extrajunctional areas, paralysis by BoTx induces all the changes observed following denervation, i.e. atrophy, appearance of extra-junctional ACh receptors, TTX-resistant action potentials, a fall of resting membrane potential, fibrillation potentials and the disappearance of extrajunctional acetylcholinesterase activity. Endplate properties are, however, largely maintained. 4. BoTx blockade delays and prevents the retraction of polyneuronal innervation and motoneurone death during development. This supports the suggestion that the paralysed muscle secretes factors essential for growth and for the survival of motoneurones. 5. Like denervated muscle, BoTx paralysed ones, express a high endocytotic activity restricted to a segment in the endplate region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rat soleus muscles were ectopically innervated by implanting a foreign nerve in an endplate-free region of muscle and, 2–3 weeks later, cutting the original nerve. The junctional, 16 S form of acetylcholinesterase (AChE) and focal staining for AChE disappeared from the old endplate region within a few days after denervation. In muscles with an ectopic nerve, but not in paired control muscles, 16 S AChE and focal staining were restored in the old endplate region 1–2 weeks after denervation even though nerve fibers could not be detected in that region. These results suggest that the nerve exerts a local effect, specifying the site at which junctional AChE appears, and a nonlocal effect, perhaps mediated by muscle activity, regulating the amount of junctional AChE.  相似文献   

9.
SHPS-1 (Src homology 2 domain containing protein tyrosine phosphatase substrate 1) is a transmembrane glycoprotein containing three immunoglobulin-like motifs in its extracellular domain and immunoreceptor tyrosine-based inhibitory motifs (ITIM) that interact with SHP-2 (Src homology 2 domain containing protein tyrosine phosphatase-2) in its cytoplasmic region. SHPS-1 is highly expressed in brain, but at much lower levels in skeletal muscle. In this study, we found that the level of the SHPS-1 mRNA increases in rat skeletal muscle after denervation. Western blot analysis also confirmed the increase of SHPS-1 in denervated muscle. Moreover, it was found that the glycosylation of SHPS-1 is N-linked in a muscle-specific manner, and that this is altered upon innervation or denervation. Immunohistochemistry revealed SHPS-1 immunoreactivity at neuromuscular junctions (NMJs) under innervation, whereas immunoreactivity was observed extrasynaptically in muscle fibers after denervation. Our results indicate that the expression, glycosylation, and localization of SHPS-1 are strongly regulated by the nervous system, and that SHPS-1 may play an important role in denervated skeletal muscle.  相似文献   

10.
Summary Tissue composition, membrane potentials and cellular activity of potassium, sodium and chloride have been measured in innervated and denervated rat skeletal muscles incubatedin vitro. After denervation for 3 days, tissue water, sodium and chloride were increased but cellular potassium content and measured activity were little affected, despite a decrease of 16 mV in resting membrane potential which would have necessitated a decrease in cellular potassium activity of almost 50% were potassium distributed at electrochemical equilibrium. These findings, therefore, preclude a decreased electrochemical potential gradient for potassium as the cause of the membrane depolarization characteristic of denervated muscle fibers. Analysis of the data excludes an important contribution of rheogenic sodium transport to the resting potential of innervated muscles. These results strongly support the hypothesis that the decreased membrane potential in denervated fibers reflects a relative increase in the membrane permeability to sodium.  相似文献   

11.
STUDIES ON INCREASED ACID HYDROLASE ACTIVITIES IN DENERVATED MUSCLE   总被引:2,自引:1,他引:1  
Denervation of rat hemidiaphragm led to large increases in the activity of acid proteinase, cathepsin B1 and β-glucuronidase in the muscle. The increases were not confined to the endplate regions of the muscle. Mononuclear cells extracted from normal and denervated extensor digitorum longus and diaphragm muscles contained only a small proportion of the acid proteinase and cathepsin B1 activities in the muscle. Actinomycin D, but not methotrexate, prevented the increase in acid proteinase and cathepsin B1 normally resulting from denervation. Brij/58 increased acid proteinase activity to a smaller extent in the denervated muscle than in the control. The length of the distal nerve stump remaining after denervation influenced the enzyme increases, but acid proteinase and cathepsin B1 appeared to be affected differently. The significance of the post-denervation increase in hydrolase activities is still unknown.  相似文献   

12.
In adult rat sternocleidomastoid muscle, AChE is concentrated in the region rich in motor end-plates (MEP). All major AChE forms, "16 S," "10 S," and "4 S," are accumulated at high levels, and not only "16 S" AChE. After denervation, muscle AChE decreases; 2 weeks after denervation, low levels (20-40% of control) are reached for all forms. During the following weeks, a slow but steady increase in "10 S" and "16 S" AChE occurs in the denervated muscle. At this stage, all forms are again observed to be highly concentrated in the region containing the old sites of innervation. Thus, in adult rat muscle the structures able to accumulate "16 S," "10 S," and "4 S" AChE in the MEP-rich regions remain several months after denervation. In normal young rat sternocleidomastoid muscle at birth, all AChE forms are already accumulated in the MEP-rich region. After denervation at birth, the denervated muscle loses its ability to keep a high concentration of "4 S," "10 S," and "16 S" AChE in the old MEP-rich region. All AChE forms are still present 1 month after denervation, but they are decreased and diffusedly distributed over the whole length of the muscle. In particular, "16 S" AChE is detected in the same proportion (10-15%) all along the denervated muscle. Thus, the diffuse distribution of AChE, and especially "16 S" AChE, after neonatal denervation, contrasts with the maintained accumulation observed in adult denervated muscle. It seems that denervation of young muscle results in a specific loss of the muscle ability to concentrate high levels of all AChE forms at the old sites of innervation.  相似文献   

13.
The objective of this study was to examine the effects of two different denervation procedures on the distribution of nerve fibers and neurotransmitter levels in the rat jejunum. Extrinsic nerves were eliminated by crushing the mesenteric pedicle to a segment of jejunum. The myenteric plexus and extrinsic nerves were eliminated by serosal application of the cationic surfactant benzyldimethyltetradecylammonium chloride (BAC). The effects of these two denervation procedures were evaluated at 15 and 45 days. The level of norepinephrine in whole segments of jejunum was initially reduced by more than 76% after both denervation procedures, but by 45 days the level of norepinephrine was the same as in control tissue. Tyrosine hydroxylase (nor-adrenergic nerve marker) immunostaining was absent at 15 days, but returned by 45 days. However, the pattern of noradrenergic innervating axons was altered in the segment deprived of myenteric neurons. Immunohistochemical studies showed protein gene product 9.5 (PGP 9.5)-immunoreactive fibers in whole-mount preparations of the circular smooth muscle in the absence of the myenteric plexus and extrinsic nerves. At 45 days, the number of nerve fibers in the circular smooth muscle increased. Vasoactive intestinal polypeptide (VIP)-immunoreactive fibers, a subset of the PGP 9.5 nerve fibers, were present in the circular smooth muscle at both time points examined. Choline acetyltransferase (CAT) activity and VIP and leucine enkephalin levels were measured in separated smooth muscle and submucosa-musosal layers of the denervated jejunum. VIP and leucine-enkephalin levels were no different from control in tissue that was extrinsically denervated alone. However, the levels of these peptides were elevated two-fold in the smooth muscle 15 and 45 days after myenteric and extrinsic denervation. In the submucosa-mucosa, VIP and leucine enkephalin levels also were elevated two-fold at 15 days, but comparable to control at 45 days. CAT activity was equal to control in the smooth muscle but elevated two-fold in the submucosa-mucosa at both times. These results provide evidence for innervation of the circular smooth muscle by the submucosal plexus. Moreover, these nerve fibers originating from the submucosal plexus proliferate in the absence of the myenteric plexus. Furthermore, the myenteric neurons appear to be essential for normal innervation of the smooth muscle by the sympathetic nerve fibers. It is speculated that the sprouting of the submucosal plexus induced by myenteric plexus ablation is mediated by increased production of trophic factors in the hyperplastic smooth muscle.  相似文献   

14.
Membrane potentials, cable parameters, and component resting ionic conductances of gastrocnemius fibers from normal goats were measured in vitro at six to 32 days following denervation by section of the tibial nerve. Denervated fibers were depolarized an average of 11.6 +/- 1.5 mV (six preparations) from the control mean of 62.1 +/- 1.0 mV (124 fibers) over the period studied. Fibrillation, tetrodotoxin-resistant action potentials, and anode-break excitation were present in the denervated preparations after 13 days. The control cable parameters from 124 fibers (13 preparations) were membrane resistance, 1052 +/- 70 omega-cm2 and membrane capacitance, 6.2 muF/cm2. In denervated fibers membrane resistance increased two to three times in the 13 to 32 day period; membrane capacitance increased about 50% in normal solution at eight to nine, 27-28, and 32 days. Myoplasmic resistivity was assumed to be 112 omega-cm. Measurements were made at 38 degrees C. Component resting conductances were determined from the cable parameters in normal and chloride-free solution. Mean chloride conducantance GC1 and mean potassium conductance GK of control fibers were 776 +/- 49 mumhos/cm2 and 175 +/- 15 mumhos/cm2 (92 fibers), respectively. Following denervation GC1 increased slightly at six to nine days then fell to low values at 16 to 32 days that were close to or indistinguishable from zero. GK increased significantly to 372 +/- 40 mumhos/cm2 and 499 +/- 90 mumhos/cm2 at 16 to 20 and 32 days, respectively. It was concluded from these findings that GC1 and GK of mammalian skeletal muscle are controlled by factors from the nerve and/or muscle action potentials. Goat muscle is different from frog muscle in which GC1 does not change and GK decreases during denervation.  相似文献   

15.
The origin of the membrane changes induced in skeletal muscle by denervation has been investigated by examining partially denervated rat hindlimb muscles rendered inactive for 2-3 days by a chronic conduction block in the sciatic nerve. Extra-junctional sensitivity to acetylcholine and spike resistance to tetrodotoxin developed to the same extent in the denervated and the adjacent innervated but inactive fibres. On the other hand, impulse-blocked fibres of control muscles not containing denervated fibres showed, at this early time, little membrane changes. These results are interpreted as indicating that the response of muscle to denervation is due to the combined action of inactivity and products of nerve degeneration.  相似文献   

16.
Presenilin-1 and nicastrin, two components of gamma-secretase associated with Alzheimer's disease plaques, are present in the synapses of the brain and in various peripheral organs, including skeletal muscle. In the present study, we examined the expression pattern of presenilin-1 and nicastrin in normal and denervated hindlimb muscles of the rat. Using immunohistochemical approaches, we found that presenilin-1 and AChRalpha was co-localized at the neuromuscular junction in the normal skeletal muscles of rats. The immunoreactivities of both presenilin-1 and nicastrin were also observed at the sarcolemma of muscle fibers. We discovered that presenilin-1 mRNA and its protein are upregulated after denervation of the soleus and tibialis anterior muscles. Furthermore, clear co-localization between presenilin-1 and DAPI, but not nicastrin, was noted in several myonuclei in the denervated muscles. We recognized a few fibers possessing both ubiquitin and presenilin-1 protein in the cytosol. The amount of presenilin-1 in the nucleus and membrane fraction was more abundantly expressed in the denervated muscle fibers. In contrast, no significant difference in the nicastrin protein level was observed between normal and denervated muscle fibers. These data suggest that enhanced presenilin-1 protein may play a role in the degeneration and regeneration of skeletal muscle.  相似文献   

17.
Peripheral motor nerve trauma severely compromises skeletal muscle contractile function. Satellite cells respond to denervation by dividing multiple times, ultimately fusing with other satellite cells or myocytes to form new muscle fibers. After chronic denervation, satellite cell numbers decline dramatically, impairing the ability to regenerate and repair myofibers. This satellite cell depletion may contribute to the mechanical deficit observed in denervated or reinnervated muscle. Apoptosis, an evolutionarily conserved form of cell suicide, is a potential mechanism for satellite cell depletion in denervated skeletal muscle. This work tested the hypothesis that skeletal muscle denervation increases satellite cell susceptibility to apoptotic cell death. Adult rats underwent sciatic nerve transection to denervate the distal hindlimb musculature; rats of similar age without the operation served as controls. Two, 6, 10, or 20 weeks after denervation (n = 6 each group), the gastrocnemius and soleus were excised, enzymatically digested, and plated for satellite cell culture. After reaching 95 percent confluence, satellite cells were treated for 24 hours with tumor necrosis factor-alpha (20 ng/ml) and actinomycin D (250 ng/ml), known pro-apoptotic agents. Immunostaining for activated caspases, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and hematoxylin and eosin staining were performed to identify apoptotic satellite cells. Percentages of apoptotic cells were quantified histomorphometrically. In addition, the presence or absence of bcl-2 and bax was determined by Western blot analysis of control, 6 weeks of denervation, and 10 weeks of denervation specimens. At 6 and 10 weeks after nerve transection, TUNEL and caspase activity were increased more than two-fold in satellite cells isolated from denervated muscle compared with those isolated from control muscle (p < 0.05). In all experimental groups, retention of adherence to the collagen-coated substrate was strongly associated with satellite cell survival. Western blot analysis revealed that adherent satellite cells from all groups expressed both bcl-2 and bax. These data support the authors' hypothesis that skeletal muscle denervation increases satellite cell susceptibility to apoptotic cell death. Apoptosis may play a causative role in the depletion of satellite cells in long-term denervated skeletal muscle.  相似文献   

18.
Satellite cells (SCs) in normal adult muscle are quiescent. They can enter the mitotic program when stimulated with growth factors such as basic FGF. Short-term denervation stimulates SC to enter the mitotic cycle in vivo, whereas long-term denervation depletes the SC pool. The molecular basis for the neural influence on SCs has not been established. We studied the phenotype and the proliferative capacity of SCs from muscle that had been denervated before being cultured in vitro. The expression of PCNA, myogenin, and muscle (M)-cadherin in SCs of normal and denervated muscle fibers was examined at the single-cell level by immunolabeling in a culture system of isolated rat muscle fibers with attached SCs. Immediately after plating (Day 0), neither PCNA nor myogenin was present on normal muscle fibers, but we detected an average of 0.5 M-cadherin(+) SCs per muscle fiber. The number of these M-cadherin(+) cells (which are negative for PCNA and myogenin) increased over the time course examined. A larger fraction of cells negative for M-cadherin underwent mitosis and expressed PCNA, followed by myogenin. The kinetics of SCs from muscle fibers denervated for 4 days before culturing were similar to those of normal controls. Denervation from 1 to 32 weeks before plating, however, suppressed PCNA and myogenin expression almost completely. The fraction of M-cadherin(+) (PCNA(-)/myogenin(-)) SCs was decreased after 1 week of denervation, increased above normal after denervation for 4 or 8 weeks, and decreased again after denervation for 16 or 32 weeks. We suggest that the M-cadherin(+) cells are nondividing SCs because they co-express neither PCNA or myogenin, whereas the cells positive for PCNA or myogenin (and negative for M-cadherin) have entered the mitotic cycle. SCs from denervated muscle were different from normal controls when denervated for 1 week or longer. The effect of denervation on the phenotypic modulation of SCs includes resistance to recruitment into the mitotic cycle under the conditions studied here and a robust extension of the nonproliferative compartment. These characteristics of SCs deprived of neural influence may account for the failure of denervated muscle to fully regenerate. (J Histochem Cytochem 47:1375-1383, 1999)  相似文献   

19.
20.
It is known that denervation of rat skeletal muscle causes atrophy and this is often adopted as a model for human muscle atrophy. To understand the molecular changes that occur, it is important to identify the profiles of differential gene expression. In the present study, we investigated differentially expressed genes in denervated muscle using DNA microarrays with printed genes preferentially expressed in skeletal muscle. We found that several genes are differentially expressed. Of these genes, ARPP-16/19 (cAMP-regulated phosphoprotein 16/19) is selectively enhanced after denervation. The expression of ARPP-16/19 in denervated muscles starts to increase from two days after denervation surgery. On the other hand, the expression of ARPP-16/19 does not change in hind-limb suspended muscles, such as EDL and soleus muscles. These results suggest that the increase in ARPP-16/19 mRNA expression is regulated by unknown factor(s) secreted from nerves, and not by electrical muscle activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号