首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Question: Do thick‐twigged/large‐leaf species have an advantage in leaf display over their counterparts, and what are the effects of leaf habit and leaf form on the leaf‐stem relationship in plant twigs of temperature broadleaf woody species? Location: Gongga Mountain, southwest China. Methods: (1) We investigated stem cross‐sectional area and stem mass, leaf area and leaf/lamina mass of plant twigs (terminal branches of current‐year shoots) of 89 species belonging to 55 genera in 31 families. (2) Data were analyzed to determine leaf‐stem scaling relationships using both the Model type II regression method and the phylogenetically independent comparative (PIC) method. Results: (1) Significant, positive allometric relationships were found between twig cross‐sectional area and total leaf area supported by the twig, and between the cross‐sectional area and individual leaf area, suggesting that species with large leaves and thick twigs could support a disproportionately greater leaf area for a given twig cross‐sectional area. (2) However, the scaling relationships between twig stem mass and total leaf area and between stem mass and total lamina mass were approximately isometric, which indicates that the efficiency of deploying leaf area and lamina mass was independent of leaf size and twig size. The results of PIC were consistent with these correlations. (3) The evergreen species were usually smaller in total leaf area for a given twig stem investment in terms of both cross‐sectional area and stem mass, compared to deciduous species. Leaf mass per area (LMA) was negatively associated with the stem efficiency in deploying leaf area. (4) Compound leaf species could usually support a larger leaf area for a given twig stem mass and were usually larger in both leaf size and twig size than simple leaf species. Conclusions: Generally, thick‐twigged/large‐leaf species do not have an advantage over their counterparts in deploying photosynthetic compartments for a given twig stem investment. Leaf habit and leaf form types can modify leaf‐stem scaling relationships, possibly because of contrasting leaf properties. The leaf size‐twig size spectrum is related to the LMA‐leaf life span dimension of plant life history strategies.  相似文献   

2.
为了分析竹子枝-叶大小间的权衡关系,本研究对武夷山不同海拔典型竹种(毛竹、箬竹、肿节少穗竹、毛竿玉山竹和武夷山玉山竹)小枝的叶片总质量、茎质量、单叶质量和出叶强度等性状进行测定.结果表明: 随海拔升高,5个竹种间小枝上总叶质量与茎质量的异速生长指数呈显著下降趋势.竹种内,毛竹、箬竹和肿节少穗竹总叶质量与茎质量在不同海拔上均拥有共同异速生长指数(分别为0.94、0.85、0.84).毛竿玉山竹和武夷山玉山竹的叶茎质量也存在共同异速生长指数(0.79).除武夷山玉山竹外,竹子单叶质量与出叶强度之间均呈显著的负相关关系.5个竹种的单叶质量和出叶强度之间存在共同异速生长指数-1.12.总之,竹类植物的小枝总体上倾向于在低海拔环境中着生更多的叶片,而在高海拔生境下则投资更多的生物量到茎的构造上.尽管竹种间小枝的茎投资随海拔升高而增加,但其基于茎质量的出叶强度策略取决于叶片大小的构建而不是海拔生境差异.  相似文献   

3.
高黎贡山种子植物物种丰富度沿海拔梯度的变化   总被引:23,自引:4,他引:23  
物种丰富度沿海拔梯度的分布格局成为生物多样性研究的热点。为探讨中尺度区域物种丰富度沿海拔梯度的分布,本文以高黎贡山为研究对象,利用该地区的地方植物志资料,结合通过GIS生成的区域数字高程模型(DEM)数据,分析了该区域全部种子植物和乔木、灌木、草本三种生活型种子植物物种丰富度的垂直分布格局以及物种密度沿海拔梯度的变化特征。结果表明:(1)全部种子植物和不同生活型植物物种丰富度随着海拔的升高呈现先增加后减小的趋势,最大值出现在海拔1500—2000m的范围;(2)物种密度与海拔也呈现单峰曲线关系;(3)物种丰富度和物种密度分布格局的形成主要受海拔所反映的水、热状况组合以及物种分布的边界影响。  相似文献   

4.
武夷山不同海拔黄山松枝叶大小关系   总被引:1,自引:0,他引:1  
对武夷山自然保护区不同海拔黄山松叶片面积、叶片数量、小枝长度及小枝直径等性状进行测定,分析不同海拔黄山松枝-叶大小间的权衡关系.结果表明: 随海拔升高,黄山松小枝的叶片数量、小枝长度、小枝直径、出叶强度及茎截面积逐渐增大,单叶面积呈逐渐减小趋势;不同海拔黄山松小枝出叶强度与单叶面积均呈显著负相关,不同海拔黄山松小枝茎截面积与总叶面积呈显著正相关;不同海拔黄山松小枝长度、小枝直径与出叶强度呈显著负相关,与单叶面积、叶片数量及总叶面积均呈显著正相关.为提高竞争优势或是资源利用效率,低海拔黄山松倾向于在短枝上着生量少但单叶面积大的针叶,而高海拔黄山松趋向于在长枝上着生量大但单叶面积小的针叶,这体现出不同海拔梯度黄山松小枝的资源利用策略及枝叶间生物量分配的权衡机制.  相似文献   

5.
叶片性状是决定植物光合能力和羧化能力的关键因素,研究叶片性状在海拔梯度上的变化特征是解释植物对于环境变化的适应策略的重要手段。本文以分布于红池坝(10958′E, 3130′ N)草地的5个常见物种红三叶(Trifolium pratense)、老鹳草(Geranium wilfordii)、紫菀(Aster tataricus)、火绒草(Leontopodium leontopodioides)和绣线菊(Spiraea prunifolia)为研究对象,分析了所有物种(n=56)和不同物种的叶片比叶重(LMA)、叶氮含量(单位面积氮含量Narea、单位重量氮含量Nmass)以及叶片δ13C含量沿海拔梯度(815-2545m)的变化趋势及叶片性状之间的关系。研究结果表明:所有物种样品(n=56)的比叶重(LMA)、Narea和δ13C含量沿海拔梯度的增加呈显著增加趋势;Nmass沿海拔梯度的变化趋势不明显;δ13C含量与LMA、Narea呈现极显著正相关关系;不同物种的叶片性状沿着海拔梯度的响应特征有所不同,绣线菊(S. prunifolia)和老鹳草(G. wilfordii)的叶片性状沿海拔梯度的分布规律与所有物种(n=56)样品分布规律一致,红三叶(T. pratense)、紫菀(A. tataricus)、火绒草(L. leontopodioides)的各叶片性状沿海拔梯度的分布特征有所不同。  相似文献   

6.
For leaves, the light-capturing surface area per unit dry mass investment (specific leaf area, SLA) is a key trait from physiological, ecological and biophysical perspectives. To address whether SLA declines with leaf size, as hypothesized due to increasing costs of support in larger leaves, we compiled data on intraspecific variation in leaf dry mass (LM) and leaf surface area (LA) for 6334 leaves of 157 species. We used the power function LM=alpha LAbeta to test whether, within each species, large leaves deploy less surface area per unit dry mass than small leaves. Comparing scaling exponents (beta) showed that more species had a statistically significant decrease in SLA as leaf size increased (61) than the opposite (7) and the average beta was significantly greater than 1 (betamean=1.10, 95% CI 1.08-1.13). However, scaling exponents varied markedly from the few species that decreased to the many that increased SLA disproportionately fast as leaf size increased. This variation was unrelated to growth form, ecosystem of origin or climate. The average within-species tendency found here (allometric decrease of SLA with leaf size, averaging 13%) is in accord with concurrent findings on global-scale trends among species, although the substantial scatter around the central tendency suggests that the leaf size dependency does not obligately shape SLA. Nonetheless, the generally greater mass per unit leaf area of larger than smaller leaves directly translates into a greater cost to build and maintain a unit of leaf area, which, all else being equal, should constrain the maximum leaf size displayed.  相似文献   

7.
We studied the effects of twig size and altitude on biomass allocation within plant twigs (terminal branches of current-year shoots), to determine whether species with large twigs/leaves or living at low altitude allocate a higher proportion of biomass to laminas than their counterparts with small twigs/leaves or living at high altitude. Stem mass, lamina mass and area, and petiole mass were measured for terminal branches of current-year shoots in 80 subtropical evergreen broad-leaved species belonging to 38 genera from 24 families along an altitudinal gradient of Mt. Emei, Southwest China. The scaling relationships between the biomass allocations of within-twig components were determined using model type II regression method. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to either leaves or laminas was independent of twig mass. Petiole mass disproportionally increased with both lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. These cross-species correlations were consistent with those among evolutionary divergences. In addition, species at low altitude tended to have a greater leaf and lamina mass but a smaller stem mass at a given twig mass than at middle and high altitudes. This is possibly due to the high requirement in physical support and the low efficiency of eco-physiological transport for the species living at high altitude. In general, within-twig biomass allocation pattern was not significantly affected by twig size but was greatly modulated by altitude.  相似文献   

8.
《植物生态学报》2017,41(12):1228
Aims Leaf is the organ of plant photosynthesis, and it is important to understand the drivers for the variations of leaf nitrogen (N) and phosphorus (P) stoichiometry along geographical and climatic gradients. Here we aimed to explore: 1) the changes in leaf nitrogen (N) and phosphorus (P) stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, and 2) the relative contribution of climate, plant characteristics, and phylogeny to the changes in leaf N, P concentration and N:P.  相似文献   

9.
采用样带网格调查方法和α、β多样性指数分析方法,研究了长白山河岸带原始林和次生林群落木本植物多样性沿海拔梯度分布规律及其对采伐干扰的响应.结果表明:不同海拔区域河岸带原始林群落均由11~13个树种组成,其在群落中的地位随海拔升高而发生变化,阔叶树种优势地位逐步被针叶树种所取代,采伐干扰不仅改变了群落树种丰富度及其在群落中的地位,而且使针叶树种取代阔叶树种的趋势有所增强;河岸带原始林群落物种多样性沿海拔梯度呈现出中、低海拔区域相对较高且比较恒定(2.454~2.544),高海拔区域(2.250)下降的分布规律,采伐干扰改变了其沿海拔梯度分布格局(波动型),加大了不同海拔区域群落间的波动性(2.174~2.692);河岸带原始林群落树种沿海拔梯度的变动速率相对较低(1.5~3.5),且群落相似性较高(0.85~0.94),采伐干扰使次生林群落树种沿海拔梯度的变动幅度增大(0.5~6.0),群落相似性下降(0.68~0.91),但次生林群落沿海拔梯度分布仍具有较高连续性.  相似文献   

10.
神农架海拔梯度上4种典型森林的乔木叶片功能性状特征   总被引:3,自引:0,他引:3  
罗璐  申国珍  谢宗强  喻杰 《生态学报》2011,31(21):6420-6428
研究植物群落叶片功能性状沿环境梯度的变化可以更好地认识群落对环境的适应机制,海拔梯度在较小的空间范围内浓缩了不同的群落类型和环境梯度,是研究和理解群落与环境关系的理想场所。以神农架海拔梯度上4种典型森林为研究对象,分析了4种典型森林优势乔木树种的LMA、LDMC、Narea、Nmass、叶片厚度及叶片叶绿素含量等主要叶片功能性状随海拔的变化规律及各功能性状之间的相关性,以期从叶片功能性状角度揭示群落适应环境的机制。研究结果表明:在780-1970 m范围内,神农架海拔梯度上典型森林乔木优势种叶片的、Narea和叶片厚度随海拔升高而下降,而海拔2570 m的亚高山针叶林的LMA、Narea和叶片厚度最高,分别为187.37 g/cm2、1.92 g/m2和385.31 um,且针叶林的LMA是常绿阔叶林的2倍、落叶阔叶林的3.7倍;除常绿落叶阔叶混交林的Nmass小于落叶阔叶林外,Nmass随海拔升高(780-2570 m)而下降;海拔最高(2570 m)的针叶林和海拔最低(780 m)的常绿阔叶林的LDMC和叶绿素含量最高,分别为454.93 g/kg、407.64 g/kg和48.84、44.12;而海拔介于二者之间的常绿落叶阔叶混交林和落叶阔叶林的LDMC和叶绿素含量则最低,分别为338.93 g/kg、337.3 g/kg和38.73、38.19。叶片各功能性状之间存在着显著的相关性:叶片厚度与LMA/LDMC及LMA显著正相关。叶片叶绿素含量与Narea显著正相关。LMA与LDMC、Narea、叶片厚度、叶绿素含量显著正相关,LDMC与Narea、叶绿素含量、叶片厚度显著正相关,Narea与叶片厚度、叶绿素含量显著正相关,叶片厚度、叶绿素含量显著正相关。本研究进一步表明,随着海拔梯度上升环境条件的变化,森林群落不同物种功能性状间的相互作用共同决定着森林群落对环境的适应性。  相似文献   

11.
 A hypothesized relationship between seed weight and leaf size was investigated for 58 diverse British (semi-)woody species. Interspecific variation in leaf size of adult plants corresponded allometrically with interspecific variation in the weight of an infructescence (seed-bearing inflorescence). The relationship between seed size and leaf size of adult plants was triangular. The corners of the triangle were interpreted in terms of ecological strategy. Medium-sized infructescences, small seeds and large leaves were seen among medium-sized, fast-growing, earlier-successional, mostly deciduous shrubs and trees; small infructescences, small seeds and small leaves mostly among low, slow-growing evergreens from stress-prone, proclimax habitats; and large infructescences, large seeds and large leaves among slow-growing, later-successional trees of potential competitive vigour. The hypothesis that the combination of large seeds and small leaves is allometrically unlikely was supported by the data. The roles of ontogeny and taxonomic relatedness in the seed size-leaf size relationship were examined by correlative and taxonomic analyses of seed, plant and leaf size during the unfolding of the life history from seed through two seedling phases to adulthood. Deciduous versus evergreen leaf habit was a source of deviation from the otherwise linear allometric relationships during ontogenetic development, none of which were, individually, confounded significantly with taxonomy. Received: 2 March 1998 / Accepted: 15 October 1998  相似文献   

12.
张玲  方精云 《生物多样性》2004,12(1):123-130
本文通过野外植被调查和室内试验,采用物理方法从1220份土样中挑选种子,进行分类统计,研究了秦岭太白山南坡土壤种子库物种组成与优势成分的垂直格局。主要研究结果有:(1)从种子数量上看,在不同的海拔段,优势科不同;从物种数来看,海拔1600m和海拔2600m处的优势科数相对较多,有4个科;蔷薇科是种数最多的优势科。(2)桦木科的糙皮桦(Betula utilis)在16个海拔样地(海拔样地共有21个)中都是优势成分之一。糙皮桦和巴山冷杉(Abies fargesii)的种子储量在中等海拔呈现峰值;较高海拔处,糙皮桦作为优势成分之一所占的比例较大;而在低海拔则相对较小。(3)从种子库中种类组成上来看,草本种类占优势;从各样地土壤种子库的生活型组成并结合优势种类来看,乔木不仅在个体组成上占优势,大部分单优种类也是来自于乔木种类。灌木种类在土壤种子库中无论是种类组成,还是在个体组成上都没有表现出优势。本文为研究太白山南坡植物群落演替动态及其沿海拔梯度的变化提供了基础。  相似文献   

13.
Aim To study the altitudinal variation of ground spiders (Araneae, Gnaphosidae) of Crete, Greece, as far as species composition, species richness, activity and range of distribution are concerned. Location Altitudinal zones (0–2400 m) along the three main mountain massifs of the island of Crete. Methods Thirty‐three sampling sites were located from 0 to 2400 m a.s.l. on Crete, and sampled using pitfall traps. Material from the high‐activity period of Gnaphosidae (mid‐spring to mid‐autumn) was analysed. Sampling sites were divided into five altitudinal zones of 500 m each. Statistical analysis involved univariate statistics (anova ) and multivariate statistics, such as multidimensional scaling (MDS) and cluster analysis (UPGMA) using binomial data of species presence or absence. Results Species richness declines with altitude and follows a hump‐shaped pattern. The activity pattern of the family, as a whole, is not correlated with altitude and is highly species‐specific. In the highest zone, both species richness and activity decline dramatically. The altitudinal range of species distribution increases with altitude. On the Cretan summits live highly tolerant lowland species and isolated residents of the high mountains of Crete. Two different patterns of community structure are recorded. Main conclusions Communities of Gnaphosidae on Crete present two distinct structures following the altitudinal gradient, these being separated by a transitional zone between 1600 and 2000 m. This study supports previous results which show a hump‐shaped decline in species richness of Gnaphosidae along altitudinal gradients, leading to a peak at 400–700 m, where an optimum of environmental factors exists. This makes this zone the meeting point of the often opportunistic lowland species with the older and most permanent residents of the island. Rapoport's rule on the positive correlation of the altitudinal range of species distributions with altitude is also supported. The high activity recorded for the species that persist on the high mountains of Crete is indicative of a tolerant arachnofauna, and is considered to result from relaxation of competitive interactions with other species. This is related to a reduction in species numbers, shortening of the activity period on high mountains and the unique presence of high mountain species that thrive only there. As shown in our study, strategies to cope with altitude are species‐specific. Therefore, there cannot exist one single model to describe how animals react to the change in altitude, even under the same environmental conditions.  相似文献   

14.
Buot  I.E.  Okitsu  S. 《Plant Ecology》1999,145(2):197-208
Leaf size zonation along an altitudinal gradient from 2000–2700 m a.s.l. on Mt. Pulog, Cordillera mountain range, Luzon Is., Philippines was examined using the Raunkiaer-Webb classification system. The entire altitudinal range studied was dominated by the small leaf size classes which possess thick, lustrous, pubescent leaves adapted to high evapotranspiration, cold temperature and other stressful conditions. Altitudinal leaf size zonation was identified as follows: (1) pure needle leaved zone from 2000–2300 m a.s.l., (2) mixed needle leaved/microphyllous zone from 2300–2400 m a.s.l., (3) microphyllous zone from 2400–2600 m a.s.l. and, (4) microphyllous/nanophyllous zone from 2600–2700 m a.s.l., coinciding with the altitudinal vegetation zonation. This pattern is different from that in other tropical mountains, which usually show a gradual shift from a mesophyllous zone in the lowland to a nanophyllous zone in the upper subalpine. Stressful conditions such as steep topography (1200–2300 m a.s.l.), cloud cover, decrease of temperature, strong winds (2600–2700 m a.s.l.) could have influenced the altitudinal leaf size zonation on Mt. Pulog. The complex phytogeographical position of Mt. Pulog as a transition region between the tropics and subtropics have also influenced leaf size zonation as in eastern Himalaya, southwestern China and Taiwan.  相似文献   

15.
1. We tested the hypothesis that the net partitioning of dry mass and dry mass:area relationships is unaltered when plants are grown at elevated atmospheric CO2 concentrations.
2. The total dry mass of Dactylis glomerata, Bellis perennis and Trifolium repens was higher for plants in 700 compared to 350 μmol CO2 mol–1 when grown hydroponically in controlled-environment cabinets.
3. Shoot:root ratios were higher and leaf area ratios and specific leaf areas lower in all species grown at elevated CO2. Leaf mass ratio was higher in plants of B. perennis and D. glomerata grown at elevated CO2.
4. Whilst these data suggest that CO2 alters the net partitioning of dry mass and dry mass:leaf area relationships, allometric comparisons of the components of dry mass and leaf area suggest at most a small effect of CO2. CO2 changed only two of a total of 12 allometric coefficients we calculated for the three species: ν relating shoot to root dry mass was higher in D. glomerata , whilst ν relating leaf area to total dry mass was lower in T. repens .
5. CO2 alone has very little effect on partitioning when the size of the plant is taken into account.  相似文献   

16.

Aim

Many aspects of vegetation response to increased drought remain uncertain but it is expected that phenotypic plasticity may be key to early adaptation of plants to environmental stress. In this work we observe the response of specific leaf area (SLA) of woody shrub vegetation to the summer drought typical of the Mediterranean climate. In addition, to observe the possible interaction between the impact of drought and the environmental characteristics of the ecosystems, communities from different edaphic and structural contexts distributed along the double stress gradient of the Mediterranean mountains (high temperature and low precipitation at low elevation; low temperature and high irradiation at high elevation) have been analysed.

Location

Central Mountain range of the Iberian Peninsula.

Methods

Along the entire altitudinal gradient, 33 shrub communities belonging to different habitat typologies (shrublands, rocky areas, hedgerows, understorey) were sampled before and after the passage of summer, both in 2017 and 2019. A total of 1724 individuals and 15,516 leaves were collected and measured to estimate the mean values and diversity of SLA of each community.

Results

The community-weighted mean and functional divergence have inverse quadratic relationships with the environmental gradient. Shrub communities at both ends of the gradient have low mean SLA values and high functional divergence of this trait. Summer drought implies a generalised decrease in the mean SLA of the communities throughout the gradient, as well as an alteration in functional richness and uniformity. However, the effect of summer drought on the plant community is mediated by the microenvironmental characteristics of its habitat.

Conclusions

Drought acclimatisation of shrub communities through phenotypic plasticity leads to rapid changes in their functional leaf structure. In the long term, our results point to an increase in plant conservative strategies, reduced ecosystem productivity, slower nutrient recycling and the reduction of communities of specific habitats as drought increases.  相似文献   

17.
In a previous empirical study, Hughes and colleagues showed that for several herbaceous species there is apparently a unique species-specific relationship between the area and mass of leaves. We tested this proposition using measurements from 15 broad-leaved species. We found that to a reasonable approximation, leaf area was proportional to leaf mass within a given species despite relatively large variations in both leaf thickness and the mass fraction of liquid matter. These observations show that the inverse density-thickness of leaves from a given species, which we call the Hughes constant, is approximately conserved. We conclude that the Hughes constant is likely to be more conservative than other traits traditionally used to describe leaves.  相似文献   

18.
王志峰  胥晓  李霄峰  杨鹏  袁新利 《生态学报》2011,31(23):7067-7074
以小五台山天然青杨种群为试验对象,通过在其分布海拔范围内(1400-1700 m)设置样方的方式研究青杨雌雄群体的平均胸径、密度、性比、大小级结构和空间分布的差异.结果显示:雌株群体的平均胸径在整个海拔梯度上无显著差异,而海拔1700 m处的群体密度显著低于其它海拔;雄株群体的平均胸径在海拔1700 m最大,显著高于其它海拔,而群体密度在各海拔梯度间无显著差异.在海拔1600 m,雌雄群体的平均胸径最接近,同时密度也最接近.从整个海拔范围来看,青杨雌雄个体的比例(雄/雌)为0.80∶1,性比不偏离1∶1(x2=2.94,P>0.05).但在不同海拔梯度上性比有所不同,低海拔性比为0.44,显著偏雌(X21400=5.91,P<0.05),而高海拔性比为2.55,显著偏雄(x21700=6.56,P<0.05);随着海拔接近1600 m,性比逐渐趋于1:1(x21600=0,P>0.05).除海拔1700 m为下降型外,青杨雌雄群体的大小级结构在其它海拔主要表现为稳定型.而最稳定群体结构的分布海拔在雌雄群体间不同.在海拔1400 m,雌株群体中I级和Ⅱ级植株占群体比例最大;雄株群体I级和Ⅱ级植株占群体比例最大的海拔是1600 m.群体空间分布以聚集分布为主,彼此间无明显差异;但群体间聚集强度的变化在海拔梯度上各有不同,主要表现为雌株群体的PAI随海拔的升高逐渐增加,而雄株群体的PAI则随海拔的升高呈现出先增加后减少的趋势.研究结果表明了青杨雌雄群体的分布特征沿海拔梯度的变化明显不同,中等海拔区域可能为青杨种群的最适繁衍区.  相似文献   

19.
Changes in some leaf characteristics: leaf mass area (LMA), content of photosynthetic pigments and nitrogen in the leaves, leaf mass ratio (LMR) and leaf area ratio (LAR) were investigated in steppe plants of the Volga land along the gradient of aridity. When drought stress became stronger, the content of chlorophylls in the leaves, LMR and LAR decreased, whereas LMA and the proportion of carotenoids in the leaves rose. In the North to South direction, the content of pigments and nitrogen per unit whole plant weight considerably decreased (4 and 2 times, respectively). The relationship between leaf indices (chlorophyll and nitrogen contents and LMA) differed along this gradient. It was concluded that adaptation of steppe plants to drought stress generally depended on predominant development of heterotrophic tissues in the leaf and the whole plant. During aridization, the stress-tolerant species became more numerous.  相似文献   

20.
Background: Leaf traits are important in determining the capacity for a plant to acquire carbon, but few data are available for montane cloud forests in the Andes.

Aims: To investigate the changes in leaf traits along a large altitudinal transect (220–3600 m) from lowland to montane cloud forest in Peru.

Methods: We determined leaf mass per area (LMA, g m?2), leaf tissue density (L d, g cm?3), and foliar nitrogen (N) and phosphorus (P) content, both on a mass (N m and P m, %) and area (N a and P a, g m?2) basis for the most abundant species locally.

Results: LMA increased with altitude (62.8–169.4 g m?2), though overall, LMA was lower than in comparable tropical elevation gradients. N m declined significantly with altitude (2.39–1.25 %, P < 0.05), but N m contents were higher than in comparable studies. The relatively high N m and low LMA values are consistent with published global leaf trait datasets. No altitudinal trend for P m was found; rather, our data highlighted the spatial variability in P m (and P a) within and among sites at different elevations. Foliar N:P ratios did not show a trend with altitude and did not indicate N limitation except at 3000 m altitude.

Conclusions: Though leaf traits showed altitudinal trends similar to other studies, contrary to the general hypothesis, our data suggest that the tropical montane forests presented here are not N limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号