首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SPC3 is a multibranched peptide containing eight identical GPGRAF motifs which are derived from the human immunodeficiency virus (HIV)-1 gp120 V3 loop consensus sequence. This molecule was reported to prevent the infection of CD4+ cells by various HIV-1 and HIV-2 strains. However, the molecular mode of action of SPC3 remains unclear. Here, we investigated the possibility that SPC3 could interact with alpha/beta-chemokine receptors following observations that, first, the V3 loop is likely to be involved in alpha/beta-chemokine receptor-dependent HIV entry and, second, natural ligands of these receptors are potent inhibitors of cell infection. To address this point, we examined the effects of SPC3 on Xenopus oocytes either uninjected or expressing exogenous human CXCR4 alpha-chemokine receptors. Extracellular applications of micromolar concentrations of SPC3 onto Xenopus oocytes trigger potent inward chloride currents which can be inhibited by increasing extracellular Ca2+ concentration. This effect can be blocked by chloride channel antagonists and is highly specific to SPC3 as it is not triggered by structural analogs of SPC3. The SPC3-induced chloride conductance in oocytes is alpha/beta-chemokine receptor dependent because: (i) SPC3 alters the sensitivity of this channel to external applications of human recombinant MIP-1alpha, a natural ligand of human CCR5 receptor, and (ii) the amplitude of the inward current could be increased by the expression of exogenous human CXCR4 chemokine receptor. The effect of SPC3 appears to rely on the activation of a phospholipase A2 signaling pathway, but is not affected by changes in cytosolic Ca2+ concentration, or by alterations in Gi/Go protein, adenylate cyclase, phospholipase C or protein kinase C activity. Altogether, the data indicate that SPC3 is capable of activating a surface alpha/beta-chemokine-like receptor-mediated signaling pathway in competent cells, thereby triggering, either directly or indirectly, a Ca2+-inactivated chloride conductance.  相似文献   

2.
The glycosphingolipid galactosylceramide (GalCer), which binds gp120 with high affinity and specificity, is a potential alternative receptor for human immunodeficiency virus type 1 (HIV-1) in some CD4-negative neural and epithelial human cells, including the human colonic epithelial cell line HT-29. In the present study, we demonstrate that synthetic multibranched peptides derived from the consensus sequence of the HIV-1 V3 loop block HIV-1 infection in HT-29 cells. The most active peptide was an eight-branched multimer of the motif Gly-Pro-Gly-Arg-Ala-Phe which at a concentration of 1.8 microM induced a 50% inhibition of HIV-1 infection in competition experiments. This peptide was not toxic to HT-29 cells, and preincubation with HIV-1 did not affect viral infectivity, indicating that the antiviral activity was not due to a nonspecific virucidal effect. Using a high-performance thin-layer chromatography binding assay, we found that multibranched V3 peptides recognized GalCer and inhibited binding of recombinant gp120 to the glycosphingolipid. In addition, these peptides abolished the binding of an anti-GalCer monoclonal antibody to GalCer on the surface of live HT-29 cells. These data provide additional evidence that the V3 loop is involved in the binding of gp120 to the GalCer receptor and show that multibranched V3 peptides are potent inhibitors of the GalCer-dependent pathway of HIV-1 infection in CD4-negative mucosal epithelial cells.  相似文献   

3.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

4.
Peptide fragments of the CD4 molecule were compared in their ability to 1) inhibit CD4-dependent HIV-induced cell fusion; 2) inhibit CD4-dependent HIV infection in vitro; and 3) block gp120 envelope glycoprotein binding to CD4. Peptides from the region CD4(81-92), although inactive when underivatized, were equipotent inhibitors of CD4-dependent virus infection, cell fusion, and CD4/gp120 binding when derivatized via benzylation and acetylation. Peptides of identical chemical composition, but altered sequence and derivatization pattern that blocked gp120 binding to either CD4-positive cells or solubilized CD4, also blocked infection and fusion with similar potencies. Those that did not block gp120/CD4 interaction were also inactive in HIV-1 infection and cell fusion assays. No other peptide fragments of the CD4 molecule inhibited fusion, infection, or CD4/gp120 interaction. The peptide CD4(23-56), derived from a region of CD4 implicated in binding of CD4 antibodies that neutralize HIV infection and cell fusion, had no effect on CD4-dependent cell fusion, HIV-1 infection, or CD4/gp120 binding, but did reverse OKT4A and anti-Leu 3a blockade of gp120 binding to CD4. These data provide evidence that the 81-92 region of CD4 is directly involved in gp120 binding leading to CD4-dependent HIV infection and syncytium formation. Previous observations with structural mutants of CD4 suggest that the CDR2-homologous region of CD4 is also involved, either directly or indirectly, in binding of gp120 to CD4. The CDR2- and CDR3-like domains of CD4 may both contribute to the binding of the HIV envelope necessary for HIV-1 infection and HIV-1-induced cell fusion.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

6.
Efficient human immunodeficiency virus (HIV)-1 infection depends on multiple interactions between the viral gp41/gp120 envelope (Env) proteins and cell surface receptors. However, cytoskeleton-associated proteins that modify membrane dynamics may also regulate the formation of the HIV-mediated fusion pore and hence viral infection. Because the effects of HDAC6-tubulin deacetylase on cortical alpha-tubulin regulate cell migration and immune synapse organization, we explored the possible role of HDAC6 in HIV-1-envelope-mediated cell fusion and infection. The binding of the gp120 protein to CD4+-permissive cells increased the level of acetylated alpha-tubulin in a CD4-dependent manner. Furthermore, overexpression of active HDAC6 inhibited the acetylation of alpha-tubulin, and remarkably, prevented HIV-1 envelope-dependent cell fusion and infection without affecting the expression and codistribution of HIV-1 receptors. In contrast, knockdown of HDAC6 expression or inhibition of its tubulin deacetylase activity strongly enhanced HIV-1 infection and syncytia formation. These results demonstrate that HDAC6 plays a significant role in regulating HIV-1 infection and Env-mediated syncytia formation.  相似文献   

7.
8.
There is evidence that the initial interaction between HIV-1 and the host that is essential for infection is the specific binding of the viral envelope glycoprotein, gp120, to the CD4 molecule found on certain T cells and monocytes. Most individuals infected with HIV develop antibodies against the gp120 protein. Although in vitro treatment of CD4+ T cells with mAb to a specific epitope of the CD4 molecule (T4a) blocks virus binding, syncytia formation, and infectivity, it is unclear if antibodies to gp120 from an infected individual that can inhibit the binding of gp120 to CD4 is in any way related to the clinical course of disease. Our present study characterizes the binding of 125I-labeled rgp120 to CD4+ cells, and describes an assay system that measures a potentially relevant form of immunity to HIV infection, i.e., the blocking of HIV binding to CD4+ cells. Optimal binding conditions included a 2-h incubation at 22 degrees C, 4 x 10(6) CD4+ cells, and 1 nM gp120. The dissociation constant (KD) for gp120 binding to cell surface CD4 was 5 nM, and was inhibited by soluble CD4 and by mAb to T4a but not to T3 or T4. For the binding inhibition assay, negative controls included healthy seronegatives, seronegatives with connective tissue diseases, patients with HTLV-1 disease, and patients infected with HIV-2. In studying over 100 sera, the assay was highly sensitive (98%) and specific (100%). The majority of HIV+ sera could inhibit binding at dilutions of 1/100 to 1/1000. No correlation was noted between binding inhibition (BI) titer in this assay and clinical stage of HIV infection. In addition, there was no correlation between BI titer and HIV neutralizing activity. The BI titer was correlated with the titer of anti-gp160 (r = 0.63) and the titer of anti-gp120 (r = 0.52) antibodies determined by Western blot dilution. As with neutralizing antibodies and other forms of immune response to HIV, it is unclear what role antibody blocking of HIV binding to CD4+ cells may play in active immunity to HIV in infected individuals. This activity may prove to have some value in protection against initial HIV infection and, thus, the assay may be of use in monitoring vaccine trials.  相似文献   

9.
Haematologic abnormalities accompany the majority of HIV-1 infections. At present it is unclear whether this is due directly to HIV infection of hematopoietic progenitor cells, or whether this results from an indirect mechanism secondary to HIV infection. Here we provide evidence for an indirect mechanism, whereby hematopoietic progenitor cells undergo HIV gp120-induced apoptosis (programmed cell death) even in the absence of HIV infection. Freshly isolated, purified human hematopoietic progenitor CD34+ cells, derived from both umbilical cord blood and bone marrow, co-expressed the CD4 marker at low density on their surface. Although these CD34+CD4+ cells theoretically should be capable of productive infection by HIV, we found that HIV-IIIB could not establish productive infection in these cells. Nonetheless, gp120 from IIIB could bind the cells. Thus, binding of gp120 did not correlate with infectivity. Furthermore, binding of gp120 was a specific event, leading to apoptosis upon crosslinking with anti-gp120 through a fas-dependent mechanism. If apoptosis is also observed in vivo even in uninfected hematopoietic cells, this could contribute significantly to the impairment in hematopoietic cell number and function. Our data suggest a novel indirect mechanism for depletion of CD34+ and CD34+-derived cells even in the absence of productive viral infection of these cells.  相似文献   

10.
Synthetic polymeric constructions (SPCs) including the consensus sequence of the human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein gp120 V3 loop (GPGRAF) blocked the fusion between HIV-1- and HIV-2-infected cells and CD4+ uninfected cells. A structure-activity relationship study using V3 SPC analogs showed that the most efficient inhibitor of cell fusion was an eight-branched SPC with the hexapeptide motif GPGRAF (i.e., [GPGRAF]8-SPC). N-terminal acetylation or incorporation of D-amino acids in the GPGRAF sequence of this SPC resulted in significant loss of activity. Analogs with fewer than six residues in the motif (i.e., GPGRA or GPGR), as well as SPCs with a nonrelevant sequence, did not inhibit cell fusion, demonstrating the high specificity of the antifusion activity. [GPGRAF]8-SPC, which was not toxic to CEM cells at concentrations of up to 50 microM, inhibited 50% of HIV-1(LAI) replication in these cells at a concentration of 0.07 microM. Moreover, [GPGRAF]8-SPC inhibited the infection of human peripheral blood mononuclear cells by several HIV-1 and HIV-2 isolates, including laboratory strains [HIV-1(LAI), HIV-1(NDK), and HIV-2(ROD)], and fresh primary isolates, including two zidovudine-resistant HIV-1 isolates and two HIV-2 isolates obtained from infected individuals. The multibranched peptide also inhibited infection of human primary macrophages by the highly cytopathic macrophage-tropic isolate HIV-1(89.6). The antiviral activity of [GPGRAF]8-SPC was not related to a virucidal effect, since preincubation of HIV-1 with the peptide did not affect its infectious titer. This result is in agreement with the concept that the multibranched peptide mimics a part of the V3 loop and thus interacts with the host cell. The therapeutic properties of synthetic multibranched peptides based on the V3 loop consensus motif should be evaluated in HIV-infected patients.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) infects human CD4+ cells by a high-affinity interaction between its envelope glycoprotein gp120 and the CD4 molecule on the cell surface. Subsequent virus entry into the cells involves other steps, one of which could be cleavage of the gp120 followed by virus-cell fusion. The envelope gp120 is highly variable among different HIV-1 isolates, but conserved amino acid sequence motifs that contain potential proteolytic cleavage sites can be found. Following incubation with a soluble form of CD4, we demonstrate that gp120 of highly purified HIV-1 preparations is, without addition of exogenous proteinase, cleaved most likely in the V3 loop, yielding two proteins of 50 and 70 kDa. The extent of gp120 proteolysis is HIV-1 strain dependent and correlates with the recombinant soluble CD4 sensitivity to neutralization of the particular strain. The origin of the proteolytic activity in the virus preparations remains unclear. The results support the hypothesis that cleavage of gp120 is required for HIV infection of cells.  相似文献   

12.
CD4 is the primary receptor for human immunodeficiency virus (HIV). The binding site for the surface glycoprotein of HIV type 1 (HIV-1), gp120, has been mapped to the C'-C" region of domain 1 of CD4. Previously, we have shown that a mutant of rat CD4, in which this region was exchanged for that of human CD4, is able to mediate infection of human cells by HIV-1, suggesting that essential interactions between HIV and CD4 are confined to this region. Our observations appeared to conflict with mutagenesis and antibody studies which implicate regions of CD4 outside the gp120-binding site in postbinding events during viral entry. In order to resolve this issue, we have utilized a panel of anti-rat CD4 monoclonal antibodies in conjunction with the rat-human chimeric CD4 to distinguish sequence-specific from steric effects. We find that several antibodies to rat CD4 inhibit HIV infection in cells expressing the chimeric CD4 and that this is probably due to steric hinderance. In addition, we demonstrate that replacement of the rat CDR3-like region with its human homolog does not increase the affinity of the rat-human chimeric CD4 for gp120 or affect the exposure of gp41 following binding to CD4, providing further evidence that this region does not play a crucial role during entry of virus.  相似文献   

13.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

14.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

15.
16.
J P Moore 《Journal of virology》1993,67(6):3656-3659
The CDR-3 region of CD4 has been proposed to be involved in the fusion reaction between human immunodeficiency virus type 1 (HIV-1) and CD4+ cells, either at a stage involving virus binding or subsequent to virus binding. Part of the evidence for this has been the observation that monoclonal antibodies (MAbs) to CDR-3 block HIV infection potently without strongly inhibiting the binding of monomeric gp120 to CD4. Here I show that, in a system using oligomeric, virion-bound gp120, a MAb to CDR-3 resembles those to CDR-2 in that it inhibits soluble CD4 binding to virions. Consequently, ternary complexes of MAb-soluble CD4-gp120 cannot be detected with CDR-2 MAbs and are detectable only at a very low level with a CDR-3 MAb, but they clearly form when a control MAb to CD4 domain 4 is used. Although not in direct conflict with previously published data on the role of CDR-3 MAbs in the inhibition of HIV-1 infection, these experiments do not support the hypothesis that the CDR-3 region is specifically involved in virus entry at a postbinding stage.  相似文献   

17.
This paper describes a branched synthetic peptide [3.7] that incorporates sequence discontinuous residues of HIV-1 gp120 constant regions. The approach was to bring together residues of gp120 known to interact with human cell membranes such that the peptide could fold to mimic the native molecule. The peptide incorporates elements of both the conserved CD4 and CCR5 binding sites. The 3.7 peptide, which cannot be produced by conventional genetic engineering methods, is recognized by antiserum raised to native gp120. The peptide also binds to CD4 and competitively inhibits binding of QS4120 an antibody directed against the CDR2 region of CD4. When preincubated with the CD4+ve MM6 macrophage cell line, which expresses mRNA for the CCR3 and CCR5 chemokine receptors, both 3.7 and gp120 inhibit binding of the chemokine MIP-1alpha. The peptide also inhibits infection of primary macrophages by M-tropic HIV-1. Thus, 3.7 is a prototype candidate peptide for a vaccine against HIV-1 and represents a novel approach to the rational design of peptides that can mimic complex sequence discontinuous ligand binding sites of clinically relevant proteins.  相似文献   

18.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

19.
Summary Synthetic polymeric constructions (SPCs) containing the consensus sequence of the HIV-1 surface envelope gycoprotein gp120 V3 loop (GPGRAF) block the fusion between HIV-1- and HIV-2-infected cells and CD4+-uninfected lymphocytes. By testing the activity of a series of SPC analogs in a cell-to-cell fusion assay, we found that the most active construction is an eight-branched SPC with the hexapeptide motif GPGRAF. This compound is also able to inhibit the infection of human lymphocytes and macrophages by unrelated isolates of HIV-1 and HIV-2. This antiviral activity is specific, since no toxicity was observed at the concentrations that inhibit HIV replication and syncytia formation. These data suggest that V3 SPCs may represent a new class of therapeutic anti-HIV agents, able to neutralize a wide range of viral isolates in infected individuals.  相似文献   

20.
The first step in infection of human T cells with human immunodeficiency virus (HIV) is binding of viral envelope glycoprotein gp120 to its cellular receptor, CD4. The specificity of this interaction has led to the development of soluble recombinant CD4 (rCD4) as a potential antiviral and therapeutic agent. We have previously shown that crude preparations of rCD4 can indeed block infection of T cells by HIV type 1 (HIV-1). Here we present a more detailed analysis of this antiviral activity, using HIV-1 infection of the T lymphoblastoid cell line H9 as a model. Purified preparations of rCD4 blocked infection in this system at nanomolar concentrations; combined with the known affinity of the CD4-gp120 interaction, this finding suggests that the inhibition is simply due to competition for gp120 binding. As predicted, rCD4 had comparable activity against all strains of HIV-1 tested and significant activity against HIV-2. Higher concentrations of rCD4 blocked infection even after the virus had been adsorbed to the cells. These findings imply that the processes of viral adsorption and penetration require different numbers of gp120-CD4 interactions. Recombinant CD4 was able to prevent the spread of HIV infection in mixtures of uninfected and previously infected cells. Our studies support the notion that rCD4 is a potent antiviral agent, effective against a broad range of HIV-1 isolates, and demonstrate the value of purified rCD4 as an experimental tool for studying the mechanism of virus entry into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号