首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation that is synthesized by several human cell types including polymorphonuclear leukocytes (PMN). We examined the synthesis and release of PAF by stimulated human PMN under several conditions, assayed by the incorporation of [3H]acetate into PAF and by bioassay. PAF synthesis was induced by calcium ionophore A23187 (IoA), opsonized zymosan (OpsZ), and N-formyl-methionyl-leucyl-phenylalanine (FMLP) with the relative order of potency IoA much greater than OpsZ greater than FMLP. A variety of other agonists, including phorbol myristate acetate, an activator of protein kinase C and of PMN functional responses, did not stimulate PAF synthesis. PAF synthesis by PMN in response to IoA, OpsZ, and FMLP was concentration- and time-dependent but release of the phospholipid was not: little PAF (1 to 10%) was released from PMN in suspension regardless of the total amount produced, the agonist, its concentration, the time of incubation, or the concentration of extracellular albumin. This was also the case with functionally altered neutrophils that had been "primed" with cytochalasin B or lipopolysaccharide or that had adhered to surfaces. PAF synthesis was tightly coupled with leukotriene B4 production by adherent PMN as well as by neutrophils in suspension, supporting the hypothesis that the two lipid autacoids may be derived from a common precursor. However, PAF synthesis could be dissociated from aggregation and surface adhesion, indicating that it is not absolutely required for these responses of activated PMN. The total amount of PAF that accumulated, but not the percentage that was released, was altered in adherent PMN compared to cells in suspension. These experiments demonstrate that PAF production and its subsequent processing by human neutrophils are highly regulated events. PAF synthesis is associated with PMN activation, but it is not a requisite for early adhesive responses of neutrophils. Because little of the PAF produced by stimulated PMN is released from the cells, it appears that PAF has an intracellular role in PMN function and/or that it may have novel intercellular effects that do not require release into the fluid phase.  相似文献   

2.
Human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with N'-formyl-methionyl-leucyl-phenylalanine (FMLP) in the presence of cytochalasin B but in the absence of human serum albumin (HSA) synthesized only small amounts of platelet-activating factor (PAF) that attained maximum levels within 60-120 s after stimulation; in addition, no release of PAF occurred. However, in the presence of 2.5 mg HSA/ml, there was a threefold increase in PAF synthesis, 30-40% of which was released within 5 min after FMLP stimulation. In the presence of 50 mg HSA/ml there was at least a fourfold increase in PAF synthesis and release, with maximal synthesis occurring 10-20 min after stimulation. Thus, the presence of HSA during PMN stimulation not only induced an albumin dose-dependent increase in PAF release but significantly augmented the synthesis of PAF. In contrast to PAF synthesis and release, the presence or absence of HSA had no effect upon lysosomal enzyme secretion from FMLP-stimulated PMN, which was maximal within 30-60s after stimulation. These results demonstrate that HSA plays an essential role in vitro in the synthesis and release of PAF from human PMN, and support the hypothesis that there is a cyclic PAF synthesis-release coupling mechanism in the stimulated human PMN.  相似文献   

3.
Extracellular Ca2+ regulated the synthesis and release of platelet-activating factor (PAF) from human polymorphonuclear leukocytes (PMN) stimulated with N'-formyl-methionyl-leucyl-phenylalanine (FMLP) in the presence of cytochalasin B. Maximum PAF synthesis and release required the presence of 0.14 mM Ca2+ whereas 1.4 mM Ca2+ was necessary for maximum lysosomal enzyme secretion. The synthesis of PAF occurred within 2.5 min after PMN stimulation in the presence of 1.4 mM Ca2+; however, PAF release did not occur until 5 min after stimulation. Peak PAF release occurred by 7.5 min but accounted for only 30-40% of the total amount of PAF synthesized, the remainder being retained on or within the PMN. Stimulation of PMN in the presence of 0.01 M EDTA or EGTA decreased PAF synthesis and release by greater than 95%. In the absence of extracellular Ca2+, stimulated PMN synthesized PAF in amounts that were 10-30% of maximum, but there was no release of the newly synthesized PAF. At Ca2+ concentrations greater than 0.01 mM, there was a dose-dependent (up to 0.14 mM) increase in PAF synthesis that was associated with the initiation and concomitant increase in the amount of PAF released. These data suggest the presence of a PAF synthesis-release coupling mechanism in which the extracellular Ca2+-dependent release of PAF stimulates additional PAF synthesis.  相似文献   

4.
The N-formylated tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) initiated the generation of immunoreactive C-6 sulfidopeptide leukotrienes and of leukotriene B4 (LTB4) in a dose-dependent manner from monolayers of human monocytes pretreated for 10 min with 5 micrograms/ml of cytochalasin B. The EC50 for the immunoreactive C-6 sulfidopeptide leukotrienes was 10(-8) M FMLP and for immunoreactive LTB4 was 5 X 10(-8) M FMLP. The maximal response to FMLP occurred within 10 min, and the sum of the two classes of leukotrienes generated was about 1/6 that obtained from monocytes stimulated with calcium ionophore A23187. The requirement for cytochalasin B in order for FMLP, but not the calcium ionophore, to stimulate leukotriene generation is compatible with the ability of cytochalasin B to augment in other cells certain stimulus-specific transmembrane responses that are not dependent on the integrity of the cytoskeleton. Resolution by reverse phase high performance liquid chromatography of the products released from monocytes pretreated with cytochalasin B and stimulated with FMLP or calcium ionophore yielded a single peak of immunoreactive LTB4 eluting at the same retention time as the synthetic standard; immunoreactive C-6 sulfidopeptide leukotrienes eluted at the retention times of leukotriene C4 (LTC4) and leukotriene D4 (LTD4). [3H]LTB4 was not metabolically altered by monocytes pretreated with cytochalasin B and activated with FMLP in comparison with cells treated with buffer alone, whereas [3H]LTC4 was partially converted to [3H]LTD4. The leukotriene-generating response of monolayers of human monocytes pretreated with cytochalasin B to FMLP is receptor-mediated, as indicated by the inactivity of the structural analog N-acetyl-methionyl-leucyl-phenylalanine and by the capacity of the FMLP receptor antagonist carbobenzoxyphenylalanyl-methionine to inhibit the agonist action of FMLP in a dose-response fashion.  相似文献   

5.
The effects were studied of cytochalasin B and N-formyl peptide (FMLP) in various concentrations on the morphology and degranulation (release of the granule contents lysozyme and beta-glucuronidase) of polymorphonuclear leukocytes (PMN) suspended in either Hanks' solution or 100% fresh heparinised plasma. PMN in low concentrations of FMLP in Hanks' solution or in plasma alone showed "long" polarisation and did not degranulate. Cytochalasin B caused the PMN in low concentrations of FMLP or in plasma to become spherical, but no degranulation of the cells occurred. High concentrations of FMLP in Hanks' solution induced "short" polarisation of PMN with slight degranulation of the cells. Cytochalasin B together with high concentrations of FMLP in Hanks' solution induced zeiosis ("blebbing") and marked degranulation of the cells. However, cytochalasin B and high concentrations of FMLP in plasma caused PMN to exhibit "short" polarised morphology and markedly degranulate. These results suggest that degranulation of PMN can be associated with either the "short" polarised shape of the cells or zeiosis, but not the "long" polarised form. Furthermore, the results indicate that plasma, although capable of causing "long" polarisation of the cells, inhibits zeiosis without affecting the degranulation of the cells induced by cytochalasin B.  相似文献   

6.
The cytokine, TNF-alpha, interacts with human neutrophils (PMN) via specific membrane receptors and primes leukotriene B4 (LTB4) production in PMN for subsequent stimulation by calcium ionophores. We have further examined the effects of TNF-alpha on arachidonic acid (AA) release, LTB4 production, and platelet-activating factor (PAF) formation in PMN by prelabeling cells with either [3H]AA or [3H]lyso-PAF, priming with human rTNF-alpha, and then stimulating with the chemotactic peptide, FMLP. TNF-alpha, alone, had little effect; minimal AA release, LTB4 or PAF production occurred after PMN were incubated with 0 to 1000 U/ml TNF-alpha. However, when PMN were first preincubated with 100 U/ml TNF-alpha for 30 min and subsequently challenged with 1 microM FMLP, both [3H] AA release and LTB4 production were elevated two- to threefold over control values. Measurement of AA mass by gas chromatography and LTB4 production by RIA confirmed the radiolabeled results. TNF-alpha priming also increased PAF formation after FMLP stimulation. These results demonstrate that TNF-alpha priming before stimulation with a physiologic agonist can enhance activation of phospholipase A2 (PLA2) resulting in increased AA release and can facilitate the activities of 5-lipoxygenase (LTB4 production) and acetyltransferase (PAF formation). Reports in the literature have hypothesized that the priming mechanism involves either production of PLA2 metabolites, increased diglyceride (DG) levels, or enhanced cytosolic calcium levels induced by the priming agent. We investigated these possibilities in TNF-alpha priming of PMN and report that TNF-alpha had no direct effect on PLA2 activation or metabolite formation. Treatment of PMN with TNF-alpha did not induce DG formation and, in the absence of cytochalasin B, no increased DG production (measured by both radiolabel techniques and mass determinations) occurred after TNF-alpha priming followed by FMLP stimulation. TNF-alpha also had no effect on basal cytosolic calcium and did not enhance intracellular calcium levels after FMLP stimulation. These results suggest that an alternative, as yet undefined, mechanism is active in TNF-alpha priming of human PMN.  相似文献   

7.
IL-8 is a novel chemotactic cytokine, produced by a variety of blood and tissue cells, that has marked activating effects on polymorphonuclear leukocytes (PMN). We report that IL-8 is produced and released by human PMN after stimulation with the chemotactic agonist FMLP. Release of IL-8 in response to FMLP was transient and not influenced by PMN adherence or by the absence of serum in the medium. Maximum yields were usually obtained with 10 nM FMLP within 2 h of stimulation (0.5-3.5 ng/ml/7 x 10(6) cells, range of 17 different donors). IL-8 release was dependent on FMLP-induced de novo protein synthesis because it was inhibited by cycloheximide, was paralleled by enhanced expression of IL-8 mRNA and was potentiated from two- to sixfold after preincubation of PMN with cytochalasin B. The FMLP effect was direct and not dependent on LPS or on contaminating monocytes, which showed only low responsiveness to FMLP. Pretreatment of PMN with pertussis toxin prevented FMLP-dependent IL-8 production, the effect being evident both at the level of mRNA expression and protein secretion. In addition, two other chemoattractans, platelet-activating factor and C5a, were found capable to induce release of IL-8 by PMN. The results of this study suggest that chemotactically stimulated PMN may be able to amplify the recruitment process of PMN to the inflammatory site by releasing IL-8. As a long-lived cytokine, IL-8 could markedly prolong the attractant effect.  相似文献   

8.
The novel calcium indicator fura red and the oxidative burst indicator dihydrorhodamine (both excited at 488 nm) were used in combination with multiparameter flow cytometry to allow simultaneous kinetic measurements of calcium fluxes and oxidative bursts in monocytes and granulocytes. Using this method it was possible to obtain direct evidence for the following cell type- and stimulus-specific differences in signal transduction pathways: 1) n-formyl-methionyl-leucyl-phenylalanine (FMLP)/cytochalasin B-induced oxidative burst is several-fold higher in granulocytes than in monocytes although the calcium fluxes have similar amplitudes in the two cell types; 2) stimulus-induced calcium fluxes in granulocytes are mainly due to release from intracellular stores, whereas monocytes mobilize calcium mainly by influx from the medium; 3) the FMLP/cytochalasin B-induced calcium flux in monocytes is less sensitive to the G-protein inhibitor pertussis toxin than the flux in granulocytes; 4) in contrast to FMLP/cytochalasin B, the protein kinase C activator phorbol myristate acetate (PMA) induces an oxidative burst that is not preceded by a cytoplasmic calcium flux; 5) the PMA-induced oxidative burst can be triggered in monocytes and granulocytes that are depleted of intracellular calcium ions, whereas that induced by FMLP/cytochalasin B can not; 6) the G-protein inhibitor pertussis toxin blocks an early event in the signal transduction pathway of FMLP/cytochalasin B, as shown by inhibition of both calcium fluxes and oxidative burst; and 7) 100 nM of the protein kinase inhibitor staurosporine blocks the FMLP/cytochalasin B-induced respiratory burst by interfering with a step downstream to cytoplasmic calcium fluxes, whereas only 10-20 nM is necessary to block PMA-induced oxidative burst.  相似文献   

9.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   

10.
We have previously found that the retroviral p15E-derived hexapeptide LDLLFL is a potent inhibitor of the FMLP-induced polarization response that is an early event in chemotaxis of monocytes and granulocytes. We investigated the mechanism of action of LDLLFL. LDLLFL inhibited the changes in [Ca2+]i in response to FMLP, but not to C5a or leukotriene B4. The reverse peptide LFLLDL was not inhibitory. In the presence of LDLLFL, the FMLP dose-response curve shifted to higher concentrations, indicating that LDLLFL interfered with binding of FMLP to its receptor. Indeed, binding of [3H]FMLP to neutrophilic granulocytes was inhibited in the presence of LDLLFL. Furthermore, immunosuppressive LDLLFL homologs also inhibited binding of FMLP to granulocytes, whereas noninhibitory LDLLFL homologs did not. Our results suggest that retroviral p15E and p15E-like factors, which can be found in serum of patients with cancer or chronic upper airway infections, may interfere with the interaction of N-formylpeptides derived from (opportunistic) bacteria, with monocytes and granulocytes. This receptor interference may impair monocyte and granulocyte reactivity toward these agents.  相似文献   

11.
Leptospire lipopolysaccharide (LPS) stimulated the adherence of polymorphonuclear neutrophils (PMNs) to human umbilical vein endothelial cells (HUVEC). Enhanced PMN adherence in response to leptospire LPS can be mediated by platelet-activator-factor (PAF), because a PAF antagonist reduced adherence. Leptospire LPS also induced the adherence platelets or U937. The second experiment involved leptospire LPS elicited platelet aggregation in a PMN-platelet mixture, because leptospire LPS stimulated human PMN but not the human platelets. The platelet response was observed only in the mixture system and was inhibited by a PAF antagonist. PAF could be an important pathogenic factor in human leptospirosis.  相似文献   

12.
The ability of pepstatin A, a protease inhibitor produced by Streptomyces testaceus, to elicit a number of responses by the human PMN has been studied. In lysozyme and beta-glucuronidase release, pepstatin A 10(-5)M is equivalent to the synthetic oligopeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) 10(-7)M. In superoxide release, pepstatin A 10(-5)M produces 80% of that originated by FMLP 10(-7). After two minutes of incubation the superoxide release is important, there being no further increase after 10 minutes. Preincubation of the cells with cytochalasin B before stimulation with pepstatin A elicits a noticeable increase in O2- release. In chemotaxis, pepstatin A 10(-6) originates the same cell motility as FMLP 10(-9). Pepstatin A produces a cross deactivation with FMLP which adds further evidence to the hypothesis that both stimuli compete for the same receptor in the PMN.  相似文献   

13.
The behavior of platelet-activating factor (PAF) produced in stimulated human polymorphonuclear leukocytes (PMN) was investigated in the presence of serum under conditions close to those existing in vivo. When the cells were stimulated in the presence of the serum obtained from a PAF acetylhydrolase (PAF-AH)-deficient Japanese subject, over 60% of synthesized PAF was detected in the extracellular medium by bioassay, scintillation proximity RIA and selected ion monitoring/gas chromatography/mass spectrography analysis. The release of PAF from PMN after stimulation with FMLP and A23187 was also observed in the presence of normal serum treated with acid to inactivate PAF-AH. The heterogeneity of the molecular species of extracellular PAF was similar to that of intracellular PAF produced in stimulated PMN in the presence of PAF-AH-deficient serum, ruling out the possibility that a specific molecular species of PAF was preferentially released from the cells in the presence of the serum. As these data suggested the occurrence of PAF-releasing factor(s) in the serum, an attempt was made to partially purify this factor from PAF-AH-deficient serum and acid-treated normal serum by ammonium sulfate fractionation and column chromatography with DEAE-Cellulofine and Sepharose CL-6B. The molecular mass of PAF-releasing factor revealed on a TSK gel G3000 SW HPLC column was 240 kDa, which was different from that of albumin. The binding assay, newly developed for this study, revealed that the PAF-binding activity of PAF-releasing factor is stronger than that of albumin, and that the PAF-releasing factor forms a complex with PAF at low concentration (10(-9) M). PAF bound to this factor was difficult to be hydrolyzed by serum PAF-AH. On the other hand, the PAF/PAF-releasing factor complex had aggregatory activity toward washed rabbit platelets. These observations suggest that certain protein(s) releases and carries the PAF newly synthesized by PMN in blood plasma/serum. Thus it appears that PAF functions as an autacoid in vivo, along with other mediators.  相似文献   

14.
In contrast to our previous report (Biochem. Biophys. Res. Comm. 134:587, 1986), we now find that protein kinase C (PKC) is mobilized in human polymorphonuclear neutrophils (PMN) stimulated with platelet-activating factor (PAF) or leukotriene (LT)B4. Thus nanomolar concentrations of each compound caused PMN to lose cytosolic, PKC-specific protein phosphorylating activity, as well as receptors for phorbol myristate acetate (PMA). Smaller gains in membrane-associated PMA receptors accompanied these changes. Diacylglycerol and PMA had very similar effects on PKC. However, unlike these direct PKC activators, PAF and LTB4 induced only moderate decreases in cytosolic PKC; acted only on PMN pretreated with cytochalasin B; did not mobilize PKC in disrupted PMN or activate PKC in a cell-free system; and with respect to PAF, induced responses that partially reversed within 30 min. Furthermore, PAF, LTB4, and several of their structural analogues mobilized PKC at concentrations correlating closely with their respective affinities for cellular LTB4 or PAF receptors. Thus PAF and LTB4 acted by indirect and apparently receptor-mediated mechanisms. Four observations indicated that the cytochalasin B-dependent degranulating actions of PAF and LTB4 involved PKC. First, PKC mobilization and degranulation occurred at the same stimulus concentrations. Second, 5-hydroxyicosatetraenoate dramatically enhanced both PKC mobilization and degranulation when elicited by PAF; it had relatively little influence on LTB4-induced responses. Third, PAF-induced mobilization (t1/2 less than 7 sec) preceded degranulation (t1/2 approximately 20 sec). Finally, a PKC blocker, polymyxin B, was similarly effective in inhibiting degranulation responses to PAF, LTB4, and PMA. Because stimulated PMN may produce and use PAF, LTB4, and 5-hydroxyicosatetraenoate as secondary intracellular mediators, our results implicate PKC as a central and potentially critical regulator of function.  相似文献   

15.
Besides its function as a growth factor, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) "primes" polymorphonuclear leukocytes (PMN) for enhanced biologic responses to a number of secondary stimuli. We examined the effect of priming PMN with GM-CSF on the production of [3H] platelet-activating factor (PAF) from [3H]acetate upon stimulation with the chemotactic factors FMLP and C5a. In PMN stimulated with the individual peptide mediators alone [3H]PAF levels were close to controls, whereas considerable amounts of [3H]PAF are formed after stimulation of PMN which have been preexposed to GM-CSF. The priming effect was concentration and time dependent. It was optimal after a preincubation period of 2 h. A maximum of [3H]PAF accumulation is reached within 2.5 min (C5a) and 5.0 min (FMLP) after activation of GM-CSF-primed PMN. In addition, we show that PAF isolated from PMN preincubated with GM-CSF and triggered with chemotactic factors is able to enhance the respiratory burst in PMN. PAF formed by sequentially activated PMN could contribute to the enhanced oxygen radical production and cytotoxicity in effector cells and play a role in modulating and amplifying inflammatory reactions.  相似文献   

16.
Hypaque-Ficoll-purified human polymorphonuclear neutrophils (PMN) equilibrated with the membrane potential-sensitive probe 3,3'dipentyloxacarbocyanine [di-O-C(5)(3)] were incubated with buffer or cytochalasin B (cyto B) followed by incubation with prostaglandin E1 (PGE1) (0 to 10(-5) M) for 5 min at 37 degrees C. The cells were then stimulated with N-formyl-methionyl-leucyl-phenylalanine (FMLP) (0 to 10(-5) M). Changes in forward light scatter (FWD-SC), 90 degrees scatter (90 degrees -SC), and fluorescence intensity were measured by flow cytometry to determine the effects of PGE1 on FMLP-induced shape change, secretion, and membrane potential responses, respectively. In other experiments, the effects of PGE1 preincubation on FMLP +/- cyto B and phorbol myristate acetate-induced (O2) production were measured by superoxide dismutase-inhibitable cyto c reduction. PGE1 had no direct effects on the FWD-SC, 90 degrees-SC, or resting potential fluorescence of unstimulated or cyto B-pretreated PMN. PGE1 produced a dose-dependent inhibition of the proportion of depolarizing PMN in response to FMLP, which was maximal at 10(-6) M (42.1 +/- 6.9% inhibition, p less than 0.005), but was apparent at 10(-8) M. The PGE1-induced inhibition was maximal after 30 sec of incubation at 37 degrees C and was caused by a decrease in the maximal percentage of depolarizing PMN without a significant change in the FMLP dose-response curve (Km = 2.43 vs 3.62 X 10(-8) M, control vs PGE1-treated) or an inhibition in the degree of depolarization by the responding subpopulation. PGE1 also inhibited the loss of 90 degrees-SC induced by FMLP in cyto B-pretreated cells (secretion response) (46.2 +/- 16.5% inhibition of the maximal 90 degrees-SC loss, n = 5, p less than 0.005), but did not affect the increase in FWD-SC seen with FMLP-induced PMN activation or the ability of cyto B to recruit more PMN to depolarize. PGE1 also inhibited FMLP +/- cyto B-induced O2 production in a dose-dependent fashion; phorbol myristate acetate-induced O2 production was also slightly inhibited, but only at high PGE1 concentrations. The data indicate that PGE1 inhibits FMLP-induced cell activation by a mechanism that involves a step distal to the recruitment of unresponsive PMN by cyto B, and that PGE1 is capable of inhibiting depolarization responses without affecting FMLP-induced shape change, providing more support for a dissociation between the two activation pathways.  相似文献   

17.
The capacity of platelet-activating factor (PAF) and its 2-O-methyl analog (methoxy-PAF) to activate human monocytes, neutrophils and platelets were compared. Both PAF and methoxy-PAF increased monocyte cytotoxicity toward WEHI 164 cells with a maximal increase in cell killing at 100 pM to 1 nM. Methoxy-PAF was slightly, but significantly, more potent than PAF for increasing cytotoxicity. PAF and methoxy-PAF increased monocyte release of TNF two- to three-fold above control release with no difference in their potency. Methoxy-PAF increased cell-associated TNF maximally after 2 to 3 h of incubation and increased TNF release maximally after 5 to 18 h of incubation. PAF induced release of the neutrophil granule enzyme beta-glucuronidase with maximal net release of 15 to 20% at 100 nM PAF whereas methoxy-PAF did not induce release of beta-glucuronidase. Similarly, 10 nM PAF induced 30% platelet aggregation whereas methoxy-PAF induced aggregation only at 1000-fold higher concentrations. Analysis of PAF and methoxy-PAF metabolism by monocyte and serum acylhydrolases indicates that methoxy-PAF is substantially more resistant than PAF to degradation by these enzymes. These observations indicate that methoxy-PAF activates monocytes selectively and suggest that this phospholipid or a related compound could be used for in vivo immunotherapy.  相似文献   

18.
Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT. The mechanism of recruitment remains unclear, but it most likely involves the modulation of a post-FMLP binding step.  相似文献   

19.
Neutrophils (PMN) treated with cAMP elevating agents were evaluated for their chemotactic responsiveness to FMLP and leukotriene B4 (LTB4). PGE1 and isoproterenol, increased PMN cyclic AMP production and inhibited chemotaxis to both FMLP and LTB4. In contrast, forskolin, which activates adenylate cyclase directly, inhibited chemotaxis to FMLP but not to LTB4. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), was required for inhibition of PMN chemotaxis to FMLP by forskolin, PGE1, and isoproterenol. Isoproterenol and PGE1 inhibited PMN chemotaxis to LTB4 in the absence of IBMX and chemotaxis was further inhibited in the presence of IBMX. PMN cAMP levels were stimulated 2- to 3-fold with isoproterenol, 6- to 10-fold with PGE1, and 5- to 7-fold with forskolin over basal levels in the presence of IBMX. These observations demonstrate that total cellular cAMP concentration is not correlated with inhibition of PMN chemotaxis to all stimuli; forskolin, which increased cyclic AMP 5- to 7-fold over basal levels, did not inhibit chemotaxis to LTB4, whereas isoproterenol, which increased cyclic AMP only 2- to 3-fold over basal levels, inhibited chemotaxis to LTB4. PMN cAMP extrusion was determined under basal conditions and in the presence of PGE1, isoproterenol, or forskolin. PMN extruded cAMP under all conditions examined.  相似文献   

20.
Preincubation for 20 h with 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) markedly augmented the chemotactic responsiveness of human blood monocytes to the classical chemoattractant, FMLP. A modest enhancement of monocyte spontaneous locomotion in the absence of chemoattractants was also observed. Maximal increase of monocyte migration was observed after pretreatment with 10(-9) M 1,25(OH)2D3 and was detectable at FMLP concentrations ranging from 10(-10) to 10(-7) M. Pretreatment with 1,25(OH)2D3 augmented the number of monocyte high affinity FMLP receptors (1500 +/- 220 and 3800 +/- 300 sites per cell for untreated and 1,25(OH)2D3-pretreated cells, respectively) with no significant changes in Kd values (2 +/- 0.5 nM and 4 +/- 1 nM, for untreated and 1,25(OH)2D3-pretreated monocytes). Enhanced chemotaxis was not restricted to FMLP, because 1,25(OH)2D3-treated monocytes showed enhanced migration also in response to activated C components and chemotactic cytokines. In agreement with previous observations, monocytes from AIDS patients showed defective migration capacity. In vitro exposure to 1,25(OH)2D3 stimulated monocyte migration in all 10 patients examined with considerable quantitative differences among individuals. Regulating the responsiveness of mature monocytes to chemo-attractants, 1,25(OH)2D3, produced systemically or in situ by immunocompetent cells, could play a role in the regulation of the recruitment of monocytes at sites of inflammation, cell-mediated immunity, or bone resorption. The potential of 1,25(OH)2D3 as a restorative agent under conditions of defective phagocyte recruitment deserves further exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号