首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal forms of amino nitrogen transported in xylem were studied in nodulated and non-nodulated peanut (Arachis hypogaea L.). In symbiotic plants, asparagine and the nonprotein amino acid, 4-methyleneglutamine, were identified as the major components of xylem exudate collected from root systems decapitated below the lowest nodule or above the nodulated zone. Sap bleeding from detached nodules carried 80% of its nitrogen as asparagine and less than 1% as 4-methyleneglutamine. Pulse-feeding nodulated roots with 15N2 gas showed asparagine to be the principal nitrogen product exported from N2-fixing nodules. Maintaining root systems in an N2-deficient (argon:oxygen, 80:20, v/v) atmosphere for 3 days greatly depleted asparagine levels in nodules. 4-Methyleneglutamine represented 73% of the total amino nitrogen in the xylem sap of non-nodulated plants grown on nitrogen-free nutrients, but relative levels of this compound decreased and asparagine increased when nitrate was supplied. The presence of 4-methyleneglutamine in xylem exudate did not appear to be associated with either N2 fixation or nitrate assimilation, and an origin from cotyledon nitrogen was suggested from study of changes in amount of the compound in tissue amino acid pools and in root bleeding xylem sap following germination. Changes in xylem sap composition were studied in nodulated plants receiving a range of levels of 15N-nitrate, and a 15N dilution technique was used to determine the proportions of accumulated plant nitrogen derived from N2 or fed nitrate. The abundance of asparagine in xylem sap and the ratio of asparagine:nitrate fell, while the ratio of nitrate:total amino acid rose as plants derived less of their organic nitrogen from N2. Assays based on xylem sap composition are suggested as a means of determining the relative extents to which N2 and nitrate are being used in peanuts.  相似文献   

2.
The use of the relative ureide content of xylem sap [(ureide-N/total N) × 100] as an indicator of N2 fixation in soybeans (Merr.) was examined under greenhouse conditions. Acetylene treatments to inhibit N2 fixation were imposed upon the root systems of plants totally dependent upon N2 fixation as their source of N and of plants dependent upon both N2 fixation and uptake of exogenous nitrate. Significant decreases in the total N concentration of xylem sap from plants of the former type were observed, but no significant decrease was observed in the total N concentration of sap from the latter type of plants. In both types of plants, acetylene treatment caused significant decreases in the relative ureide content of xylem sap. The results provided further support for a link between the presence of ureides in the xylem and the occurrence of N2 fixation in soybeans. The relative ureide content of xylem sap from plants totally dependent upon N2 fixation was shown to be insensitive to changes in the exudation rate and total N concentration of xylem sap brought about by diurnal changes in environmental factors. There was little evidence of soybean cultivars or nodulating strains affecting the relative ureide content of xylem sap. `Ransom' soybeans nodulated with Rhizobium japonicum strain USDA 110 were grown under conditions to obtain plants exhibiting a wide range of dependency upon N2 fixation. The relative ureide content of xylem sap was shown to indicate reliably the N2 fixation of these plants during vegetative growth using a 15N method to measure N2 fixation activity. The use of the relative ureide content of xylem sap for quantification of N2 fixation in soybeans should be evaluated further.  相似文献   

3.
During vegetative regrowth of Medicago sativa L., soil N, symbiotically fixed N2 and N reserves meet the nitrogen requirements for shoot regrowth. Experiments with nodulated or non-nodulated plants were carried out to investigate the changes in N flows originating from the different N sources and in xylem transport of amino acids during regrowth. Exogenous N uptake, N2 fixation and endogenous N remobilization were estimated by 15N labelling and amino acids in xylem sap were analysed. Removal of shoots resulted in great declines of exogenous N flows derived either from N2 or from NH4NO3 during the first week of regrowth, thereafter recovery increased linearly. Mineral N uptake as well as N2 fixation occurred mainly between the 10th and 18th day after removal of shoots while exogenous N assimilation in intact plants remained at a steady level. Nitrogen remobilization rates in defoliated plants increased by at least three to five-fold, especially during the first 10 days following shoot removal. Compared to control plants, contents of amino acids in xylem sap, during the first 10 days of regrowth, were reduced by about 72% and 82% in NH4NO3 grown and in N2 fixing plants, respectively. Asparagine was the main amino acid transported in xylem sap of both treated plants. Its relative contents during this period significantly decreased from 75% to 59% and from 67% to 36% respectively in non-nodulated plants and in nodulated ones. This decline was accompanied by compensatory increase in the relative contents of aspartate and glutamine.  相似文献   

4.
Transport of nitrogen in the xylem of soybean plants   总被引:54,自引:37,他引:17       下载免费PDF全文
Experiments were conducted to characterize the distribution of N compounds in the xylem sap of nodulated and nonnodulated soybean plants through development and to determine the effects of exogenous N on the distribution of N compounds in the xylem. Xylem sap was collected from nodulated and nonnodulated greenhouse-grown soybean plants (Glycine max [L.] Merr. “Ransom”) from the vegetative phase to the pod-filling phase. The sum of the nitrogen in the amino acid, nitrate, ureide (allantoic acid and allantoin), and ammonium fractions of the sap from both types of plants agreed closely with total N as assayed by a Kjeldahl technique. Sap from nodulated plants supplied with N-free nutrient solution contained seasonal averages of 78 and 20% of the total N as ureide-N and amino acid-N, respectively. Sap from nonnodulated plants supplied with a 20 millimolar KNO3 nutrient solution contained seasonal averages of 6, 36, and 58% of total N as ureide-N, amino acid-N, and nitrate-N, respectively. Allantoic acid was the predominant ureide in the xylem sap and asparagine was the predominant amino acid. When well nodulated plants were supplied with 20 millimolar KNO3, beginning at 65 days, C2H2 reduction (N2 fixation) decreased relative to nontreated plants and there was a concomitant decrease in the ureide content of the sap. A positive correlation (r = 0.89) was found between the ureide levels in xylem sap and nodule dry weights when either exogenous nitrate-N or urea-N was supplied at 10 and 20 millimolar concentrations to inoculated plants. The results demonstrate that ureides play a dominant role in N transport in nodulated soybeans and that the synthesis of ureides is largely dependent upon nodulation and N2 fixation.  相似文献   

5.
Nitrogen fixation of terrestrial legumes is strongly and rapidly diminished under flooding. Although recovery is possible with the formation of aerenchyma, information is scarce regarding recovery after draining following short-term flooding, before the appearance of morphological adaptations. This study used soybean (Glycine max) plants nodulated with Bradyrhizobium elkanii to determine xylem sap glutamine as an indication of nitrogen fixation activity during recovery from different periods of flooding. Xylem glutamine levels showed rapid recovery (within 90 min) following periods of flooding up to 4 h. Recovery was progressively slower after longer periods of flooding. After 48 h flooding very little recovery could be observed within the first 120 min after draining but recovery was possible within 48 h. Consistent with the changes in xylem glutamine, direct measurements of apparent nitrogenase activity carried out immediately on draining revealed rapid recovery after flooding for 1 h and slow recovery following 48 h of flooding. In the latter case, nitrogenase activity largely recovered 24 h after draining. Experiments with 15N2 incorporation into amino acids exported in the xylem sap revealed that glutamine was by far the most highly labelled amino acid in sap collected over the first 30 min of exposure to the isotope. This is conclusive evidence that xylem sap glutamine is an immediate product of N2 fixation and export. The changes in xylem sap glutamine seen on flooding (decline) and after draining (recovery) can therefore be attributed to changes in nitrogenase activity. The data show that xylem sap glutamine is a useful means for assessing changes in nitrogenase activity, especially when the root system is submersed in water and activity cannot be measured directly.  相似文献   

6.
Nodulated root systems of white lupin (Lupinus albus L. cv Ultra: Rhizobium strain WU425) were exposed to Ar:O2 (80:20, v/v) or Ar:N2:O2 (70:10:20, v/v/v) and C and N partitioning were examined over a 9- or 10-day period in comparison with control plants with nodulated roots retained in air. Accumulation of N ceased in plants exposed to Ar:O2 or was much reduced in plants exposed to Ar:N2:O2, but net C assimilation rates and profiles of C utilization remained similar to those of control N2-fixing plants. There was, however, a proportional reduction in CO2 evolution from nodulated roots of the Ar:O2 treatment. Xylem N levels fell rapidly after application of Ar:O2. C:N ratios of phloem sap of petioles and of stem base rose during the first day of Ar:O2 treatment and then fell progressively back to levels close to that of control plants as leaf reserves of N became available for loading of phloem. Stem top phloem sap increased progressively in C:N ratio throughout Ar:O2 treatment, presumably due to increasing shortage of xylem derived N for xylem to phloem exchange. Reexposure of Ar:O2-treated nodulated root systems to air prompted a rapid recovery of N2 fixation and restoration of plant N status. Rates of N2 fixation in plants whose roots were exposed to a range of N2 concentrations indicated an apparent Km of 10% N2 for the attached intact white lupin nodule.  相似文献   

7.
J. S. Pate  P. Lindblad  C. A. Atkins 《Planta》1988,176(4):461-471
Freshly detached coralloid roots of several cycad species were found to bleed spontaneously from xylem, permitting identification of products of nitrogen transfer from symbiotic organ to host. Structural features relevant to the export of fixed N were described for Macrozamia riedlei (Fisch. ex Gaud.) Gardn. the principal species studied. Citrulline (Cit), glutamine (Gln) and glutamic acid (Glu), the latter usually in a lesser amount, were the principal translocated solutes in Macrozamia (5 spp.), Encephalartos (4 spp.) and Lepidozamia (1 sp.), while Gln and a smaller amount of Glu, but no Cit were present in xylem sap of Bowenia (1 sp.),and Cycas (2 spp.). Time-course studies of 15N enrichment of the different tissue zones and the xylem sap of 15N2-pulse-fed coralloid roots of M. riedlei showed earlier 15N incorporation into Gln than into Cit, and a subsequent net decline in the 15N of Gln of the coralloid-root tissues, whereas Cit labeling continued to increase in inner cortex and stele and in the xylem sap. Hydrolysis of the 15N-labeled Cit and Gln consistently demonstrated much more intense labeling of the respective carbamyl and amide groups than of the other N-atoms. Coralloid roots of M. riedlei pulse-fed 14CO2 in darkness showed 14C labeling of aspartic acid (Asp) and Cit in all tissue zones and of Cit of xylem bleeding sap. Lateral roots and uninfected apogeotropic roots of M. riedlei and M. moorei also incorporated 14CO2 into Cit. The 14C of Cit was restricted to the carbamyl-C. Comparable 15N2 and CO2-feeding studies on corallid roots of Cycas revoluta showed Gln to be the dominant product of N2 fixation, with Asp and alanine as other major 14C-labeled amino compounds, but a total absence of Cit in labeled or unlabeled form.Abbreviations Ala alanine - Asp aspartic acid - Cit citrulline - Gln glutamine - Glu glutamic acid - Orn ornithine  相似文献   

8.
Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to 14CO2 to investigate the contribution of nodule CO2 fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast, radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO2 fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO2 fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO2 fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen.  相似文献   

9.
Xylem sap composition was examined in nodulated and nonnodulated cowpea (Vigna unguiculata [L.] Walp.) plants receiving a range of levels of NO3 and in eight other ureide-forming legumes utilizing NO3 or N2 as sole source of nitrogen. A 15N dilution technique determined the proportions of plant nitrogen derived from N2 in the nodulated cowpeas fed NO3. Xylem sap composition of NO3-fed, nodulated cowpea varied predictably with the relative extents to which N2 and NO3 were being utilized. The ratios of asparagine to glutamine (N/N) and of NO3 to ureide (N/N) in xylem sap increased with increasing dependence on NO3 whereas per cent of xylem nitrogen as ureide and the ratio of ureide plus glutamine to asparagine plus NO3 (N/N) in xylem sap increased with increasing dependence on N2 fixation. The amounts of NO3 and ureides stored in leaflets, stems plus petioles, and roots of cowpea varied in a complex manner with level of NO3 and the presence or absence of N2 fixation. All species showed higher proportions of organic nitrogen as ureide and several-fold lower ratios of asparagine to glutamine in their xylem sap when relying on N2 than when utilizing NO3. In nodulated (minus nitrate) cowpea and mung bean (Vigna radiata [L.] Wilczek) the percentage of xylem nitrogen as ureide remained constant during growth but the ratio of asparagine to glutamine varied considerably. The biochemical significance of the above differences in xylem sap composition was discussed.  相似文献   

10.
Partitioning and utilization of assimilated C and N were compared in nonnodulated, NO3-fed and nodulated, N2-fed plants of white lupin (Lupinus albus L.). The NO3 regime used (5 millimolar NO3) promoted closely similar rates of growth and N assimilation as in the symbiotic plants. Over 90% of the N absorbed by the NO3-fed plants was judged to be reduced in roots. Empirically based models of C and N flow demonstrated that patterns of incorporation of C and N into dry matter and exchange of C and N among plant parts were essentially similar in the two forms of nutrition. NO3-fed and N2-fed plants transported similar types and proportions of organic solutes in xylem and phloem. Withdrawal of NO3 supply from NO3-fed plants led to substantial changes in assimilate partitioning, particularly in increased translocation of N from shoot to root. Nodulated plants showed a lower (57%) conversion of C or net photosynthate to dry matter than did NO3-fed plants (69%), and their stems were only half as effective as those of NO3-fed plants in xylem to phloem transfer of N supplied from the root. Below-ground parts of symbiotic plants consumed a larger share (58%) of the plants' net photosynthate than did NO3-fed roots (50%), thus reflecting a higher CO2 loss per unit of N assimilated (10.2 milligrams C/milligram N) by the nodulated root than by the root of the NO3-fed plant (8.1 milligrams C/milligram N). Theoretical considerations indicated that the greater CO2 output of the nodulated root involved a slightly greater expenditure for N2 than for NO3 assimilation, a small extra cost due to growth and maintenance of nodule tissue, and a considerably greater nonassimilatory component of respiration in root tissue of the symbiotic plant than in the root of the NO3-fed plant.  相似文献   

11.
Cycling of amino compounds in symbiotic lupin   总被引:2,自引:0,他引:2  
The composition of amino acids was determined in the xylem andphloem sap of symbiotic lupins grown under a variety of treatmentsdesigned to alter the rate of nitrogen fixation. Asparaginewas the major amino acid in both xylem and phloem with glutamine,glutamate and aspartate also major components. GABA had a highconcentration in the xylem while valine was a major componentin the phloem. Exposure to combined nitrogen in the form ofeither ammonium or nitrate caused a reduction in specific nitrogenaseactivity and was associated with subsequent changes in bothof the translocated saps. Inhibiting nitrogen fixation by exposingnodules to oxygen produced a lower amide to amine ratio in thexylem sap (1.3:1) compared with control and nitrate ratios (2.6:1)and ammonium ratios (7.1:1). Similar ratios for amide aminewere also observed in the phloem sap. Labelling studies using15N2 to follow nitrogen fixation, ammonium assimilation andamino acid transport have shown rapid accumulation of labelinto glutamine with subsequent enrichment in glutamate, aspartate,alanine, and GABA. Asparagine was found in high concentrationsin nodules and became slowly enriched. Labelled nitrogen fixedand assimilated in nodules was detected 40 min later in stemxylem extracts, largely as the amides glutamine and asparagine.These experiments provide evidence that large amounts of nitrogenouscompounds are cycled through the root nodules of symbiotic plants(contributing approximately 50% of xylem N) and that differencesin the composition of the phloem sap may influence nodule growthand activity. Key words: Nitrogen fixation, nitrogen translocation, isotope labelling, legumes, GC-MS  相似文献   

12.
The response of non-nodulated cowpea (Vigna unguiculata (L.) Walp. cv Caloona) to a wide range of NO3 levels in the rooting medium was studied 40 days after sowing by in vitro assays of plant organs for NO3 reductase (EC 1.6.6.1) and analyses of root bleeding (xylem) sap for nitrogenous solutes. Plants fed 1, 5, 10, 20, and 40 millimolar NO3 showed, respectively, 64, 92, 94, and 91% of their total reductase activity in shoots and 34, 30, 66, 62, and 58% of the total N of their xylem sap as NO3. These data, and the absence in the plants of significant pools of stored NO3, indicated that shoots were major organs of NO3 assimilation, especially at levels of NO3 (10 to 40 millimolar) that maintained plant growth at near maximum rates. Partitioning and utilization of C and N were studied in nodulated, minus NO3 plants and non-nodulated plants fed 10 or 20 millimolar NO3, the levels of NO3 which gave rates of growth and N assimilation closest to those of the symbiotic plants. The conversion of the C of net photosynthate to dry matter was similar in nodulated plants (67%) and NO3-grown plants (64%), but greater proportions of photosynthate were translocated to below ground parts of nodulated plants (37%) than of NO3-fed plants (23 to 26%). Greater photosynthate consumption by nodulated roots was associated with proportionately greater root growth and respiration and 2-fold greater export of C in xylem than in the NO3-fed plants. Theoretical considerations suggest that the elevated CO2 output of nodulated roots was due not only to CO2 loss associated with nodule function, but also to a much greater nonassimilatory component of respiration in the supporting root of the nodulated plant compared to roots of the NO3-fed plants. Data are compared with previously published information from other legumes.  相似文献   

13.
Seedlings (180-d-old) of Casuarina cunninghamianaM L., C. equisetifoliaMiq. and C. glauca Sieber inoculated with each of two differentsources of Frankia, were analysed for translocated nitrogenouscompounds in xylem sap. Analyses were also made on sap fromnodulated and non-nodulated plants of C. glauca grown with orwithout a range of levels of combined nitrogen. Xylem exudateswere collected from stems, roots, and individual nodules ofnodulated plants and from stems and roots of non-nodulated plants.While the proportional composition of solutes varied, the samerange of amino compounds was found in xylem sap from the threedifferent symbioses. In C. glauca asparagine was the major aminoacid in the root sap followed by proline, while in symbioticC. cunninghamiana arginine accounted for more than 25% of theamino compounds. Citrulline was the major translocated productfound in the stem exudate of symbiotic C. equisetifolia. Increasingconcentrations of ammonium nitrate in the nutrient solutionresulted in increasing levels of free ammonia and glutaminein xylem sap from stems of nodulated and non-nodulated C. glauca,but there was relatively little change in the prominent solutes,e.g. citrulline, proline, and arginine. The composition of nitrogenoussolutes in stem or root exudates of C. glauca was similar tothat of exudate collected from individual nodules and on thisbasis it was not possible to distinguish specific products ofcurrent N2 fixation in xylem. The main differences in N solutecomposition between the symbioses were apparently due to hostplant effects rather than nodulation or the levels of combinedN. Also, the data indicate that the use of the proportion ofN in sap as citrulline (or indeed any other organic N solute)could not be used as an index of nitrogen fixation.  相似文献   

14.
In order to shed new light on the mechanisms of salt-mediated symbiotic N2-fixation inhibition, the effect of salt stress (75 mM) on N2-fixation in pea root nodules induced by R. leguminosarum was studied at the gene expression, protein production and enzymatic activity levels. Acetylene reduction assays for nitrogenase activity showed no activity in salt-stressed plants. To know whether salt inhibits N2-fixing activity at a molecular or at a physiological level, expression of the nifH gene, encoding the nitrogenase reductase component of the nitrogenase enzyme was analyzed by RT-PCR analysis of total RNA extracted from nodulated roots. The nifH messenger RNA was present both in plants grown in the presence and absence of salt, although a reduction was observed in salt-stressed plants. Similar results were obtained for the immunodetection of the nitrogenase reductase protein in Western-blot assays, indicating that nitrogen fixation failed mainly at physiological level. Given that nutrient imbalance is a typical effect of salt stress in plants and that Fe is a prosthetic component of nitrogenase reductase and other proteins required by symbiotic N2-fixation, as leghemoglobin, plants were analyzed for Fe contents by atomic absorption and the results confirmed that Fe levels were severely reduced in nodules developed in salt-stressed plants. In a previous papers (El-Hamdaoui et al., 2003b), we have shown that supplementing inoculated legumes with boron (B) and calcium (Ca) prevents nitrogen fixation decline under saline conditions stress. Analysis of salt-stressed nodules fed with extra B and Ca indicated that Fe content and nitrogenase activity was similar to that of non-stressed plants. These results indicate a linkage between Fe deprivation and salt-mediated failure of nitrogen fixation, which is prevented by B and Ca leading to increase of salt tolerance.  相似文献   

15.
The effect of short- and long-term changes in shoot carbon-exchange rate (CER) on soybean (Glycine max [L.] Merr.) root nodule activity was assessed to determine whether increases in photosynthate production produce a direct enhancement of symbiotic N2 fixation. Shoot CER, root + nodule respiration, and apparent N2 fixation (acetylene reduction) were measured on intact soybean plants grown at 700 microeinsteins per meter per second, with constant root temperature and a 14/10-hour light/dark cycle. There was no diurnal variation of root + nodule respiration or apparent N2 fixation in plants assayed weekly from 14 to 43 days after planting. However, if plants remained in darkness following their normal dark period, a significant decline in apparent N2 fixation was measured within 4 hours, and decreasing CO2 concentration from 320 to 90 microliters CO2 per liter produced diurnal changes in root nodule activity. Increasing shoot CER by 87, 84, and 76% in 2-, 3-, and 4-week-old plants, respectively, by raising the CO2 concentration around the shoot from 320 to 1,000 microliters CO2 per liter, had no effect on root + nodule respiration or acetylene-reduction rates during the first 10 hours of the increased CER treatment. When the CO2-enrichment treatment was extended in 3-week-old plants, the only measured parameter that differed significantly after 3 days was shoot CER. After 5 days of continuous CO2 enrichment, root + nodule respiration and acetylene reduction increased, but such changes reflected an increase in root nodule mass rather than greater specific root nodule activity. The results show that on a 24-hour basis the process of symbiotic N2 fixation in soybean plants grown under controlled environmental conditions functioned at maximum capacity and was not limited by shoot CER. Whether N2-fixation capacity was limited by photosynthate movement to root nodules or by saturation of metabolic processes in root nodules is not known.  相似文献   

16.
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.  相似文献   

17.
Nodulation, nitrogen (N2) fixation and xylem sap composition were examined in sand cultured plants of Bambara groundnut (Vigna subterranea L.) and Kersting's bean (Macrotyloma geocarpum L.) inoculated with Bradyrhizobium strain CB756 and supplied via the roots for a 4 week period from the third week onwards with different levels of (15N)-nitrate (0–15 mM). The separate contributions of nitrate and N2 to plant nitrogen were measured by isotope dilution. Increasing levels of nitrate inhibited nodule growth (measured as dry matter or nodule N) of both species parallel with decreased dependence on symbiotically-fixed N. Specific nodule activity (N2 fixed g nodule dry−1 d−1 of nodules) was reduced progressively with time in V. subterranea at higher (5 or 15 mM) levels of NO3, but this was not so for M. geocarpum. Root xylem bleeding sap of both species showed ureides (allantoin and allantoic acid) as predominant (>90%) solutes of nitrogen when plants were relying solely on atmospheric N. Levels of ureide and glutamine decreased and those of asparagine and nitrate in xylem increased with increasing level of applied nitrate. Relative levels of xylem ureide-N were positively correlated (R2=0.842 for M. geocarpum and 0.556 for V. subterranea), and the ratio of asparagine to glutamine in xylem exudate negatively correlated (R2=0.955 for M. geocarpum and 0.736 for V. subterranea) with plant reliance on nitrogen fixation. The data indicate that xylem sap analyses might be useful for indirect field assays of nitrogen fixation by the species and that Kersting's bean might offer some potential as a symbiosis in which N2 fixation is relatively tolerant of soil N.  相似文献   

18.
BACKGROUND AND AIMS: Flooding results in hypoxia of the root system to which N2 fixation of nodulated roots can be especially sensitive. Morphological adaptions, such as aerenchyma formation, can facilitate the diffusion of oxygen to the hypoxic tissues. Using soybean, the aim of the study was to characterize the morphological response of the nodulated root system to flooding and obtain evidence for the recovery of N metabolism. METHODS: Sections from submerged tissues were observed by light microscopy, while sap bleeding from the xylem was analysed for nitrogenous components. KEY RESULTS: Flooding resulted in the rapid formation of adventitious roots and aerenchyma between the stem (immediately above the water line), roots and nodules. In the submerged stem, taproot, lateral roots and adventitious roots, lysigenous aerenchyma arose initially in the cortex and was gradually substituted by secondary aerenchyma arising from cells derived from the pericycle. Nodules developed aerenchyma from cells originating in the phellogen but nodules situated at depths greater than 7-8 cm showed little or no aerenchyma formation. As a result of aerenchyma formation, porosity of the taproot increased substantially between the 4th and 7th days of flooding, coinciding with the recovery of certain nitrogenous products of N metabolism of roots and nodules transported in the xylem. Thus, on the first day of flooding there was a sharp decline in xylem ureides and glutamine (products of N2 fixation), together with a sharp rise in alanine (product of anaerobic metabolism). Between days 7 and 10, recovery of ureides and glutamine to near initial levels was recorded while recovery of alanine was partial. CONCLUSIONS: N metabolism of the nodulated soybean root system can recover at least partially during a prolonged period of flooding, a process associated with aerenchyma formation.  相似文献   

19.
Claire Cookson  H. Hughes  J. Coombs 《Planta》1980,148(4):338-345
Dwarf french beans, Phaseolus vulgaris L., were grown with or without inoculation with rhizobia (strain 3644), and with or without a combined nitrogen source (nitrate or ammonium ions). The distribution of radioactivity into products of dark 14CO2 assimilation was studied in roots or nodules from these plants. A detailed study was also made of the distribution and rates of excretion of nitrogen in xylem bleeding sap in 28 day old plants grown on the various sources of nitrogen. Whereas detached nodules accumulated radioactive glycine, serine and glutamate when incubated with 14CO2, bleeding sap from plants root fed 14CO2 contained low levels of radioactivity in these compounds but higher levels in allantoin. Chemical analysis showed allantoin to be the major compound transported in the xylem of nodulated plants, whether or not they were fed on combined nitrogen. In contrast uninoculated plants accumulated mainly amino acids in the bleeding sap, the amount and chemical composition of which depended on the combined nitrogen source.Abbreviations PEP phosphoenol pyruvate - OAA oxaloacetate  相似文献   

20.
本文对从中国东北地区土壤中分离到的8株弗氏中华根瘤菌(Sinorhizobiumfredit)进行了血清学和氢代谢研究。交叉凝集试验结果表明其中存在3种血清型,而Sj5与国内外目前发现的14种S.fredii接种的大豆依赖共生固氮作用,在其株木质部汁液中,含有大量的酰脲(尿囊酸+尿囊素),它是共生固氮氮素贮存和运输的主要形式,与接种B.japonicum的值株木质部汁液中的氮运输特征基本相同。而施以无机氮源的大豆植株,其木质部汁液中酰脲含量相对较低,但却含有相对多的氮基酸[1]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号