首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to evaluate mechanisms regulating proliferation of steroidogenically active and steroidogenically inactive theca-interstitial (T-I) cells, and, specifically, to evaluate the effects of platelet-derived growth factor (PDGF) and insulin-like growth factor-I (IGF-I). T-I cells obtained from immature Sprague-Dawley rats were cultured in chemically defined media. Proliferation was assayed by thymidine incorporation and cell counting. Steroidogenically active cells were identified by the presence of 3beta-hydroxysteroid dehydrogenase activity. Flow cytometry facilitated separation of dividing cells (in S and G2/M phases of the cell cycle) from nondividing cells (in G0 and G1 phases of the cell cycle). PDGF alone (0.1-1 nM) produced a dose-dependent increase in DNA synthesis by up to 136%. IGF-I alone (10 nM) increased DNA synthesis by 56%. In the presence of both IGF-I (10 nM) and PDGF (0.1-1 nM), DNA synthesis increased by 108-214%. PDGF (1 nM) increased the total number of T-I cells by 43%; this effect was due to an increase in the number of steroidogenically inactive cells (47%). In contrast, the stimulatory effect of IGF-I (10 nM) was predominantly due to an increase in the number of steroidogenically active cells (163%). Separation of dividing cells from nondividing cells was accomplished with the aid of flow cytometry. In the absence of growth factors, the proportion of steroidogenically active cells was 35% lower among proliferating than resting cells. PDGF (1 nM) decreased the proportion of steroidogenically active cells among both proliferating and resting cells (by 43% and 16%, respectively). In contrast, IGF-I (10 nM) increased the proportion of steroidogenically active cells among proliferating cells by 56%. These findings indicate that differentiated/steroidogenically active cells divide; furthermore, PDGF and IGF-I may selectively stimulate proliferation of individual subpopulations of T-I cells, thereby providing a mechanism for development of structural and steroidogenically active components of the T-I compartment.  相似文献   

2.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

3.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

4.
Recently, a family of growth factors has been described that activates erbB-2 receptors. These factors, known as the neu differentiation factors (NDF) or heregulins (HRG), induce tyrosine phosphorylation of erbB-2 receptors as a result of their direct interaction with either erbB-3 or erbB-4 receptors. Although it is known that expression of erbB-2 receptors has relevance in human breast cancer progression, how erbB-2, -3 and -4 receptors regulate mammary epithelial cell proliferation is not known. Therefore, experiments were carried out to study the mitogenic activity of NDF/HRG on the human mammary epithelial cell line MCF-10A which can be cultured continuously under serum-free conditions. MCF-10A cells, like primary cultures of normal human mammary epithelial cells, express an absolute requirement for exogenous epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) for growth. The results of these experiments indicate that NDF/HRG can induce tyrosine phosphorylation of p185erbB-2 in MCF-10A cells and is mitogenic for these cells. This is consistent with the coexpression of erbB-2 and erbB-3 mRNA that we have observed in MCF-10A cells. In addition, we found that NDF/HRG can substitute for either EGF or IGF-I to stimulate proliferation of these cells. The ability to substitute for both EGF and IGF-I is a unique property of NDF/HRG and is not shared by other members of the EGF or IGF family of growth factors, nor by other factors that we have studied. A striking isoform specificity was also observed which indicated that the β-isoforms of NDF/HRG were greater than ten times more mitogenic than the α-isoforms. We also examined the mitogenic activity of NDF/HRG on MCF-10A cells that overexpress the erbB-2 receptor as a result of infection with a retroviral vector containing the human c-erbB-2 gene (MCF-10AerbB-2 cells). These studies indicated that MCF-10AerbB-2 cells have increased sensitivity to the mitogenic effects of NDF/HRG and that these cells are responsive to the α-isoforms of NDF/HRG at physiological concentrations. Thus, NDF/HRG is a dual specificity growth factor for human mammary epithelial cells, and the responsiveness of the cells to NDF/HRG is influenced by the level of expression of erbB-2 receptors. © 1995 Wiley-Liss, Inc.  相似文献   

5.
6.
The regulation of pig theca cell steroidogenesis was studied by the development of a physiological serum-free culture system, which was subsequently extended to investigate potential theca-granulosa cell interactions. Theca cells were isolated from antral follicles 6-9 mm in diameter and the effects of plating density (50-150x10(3) viable cells per well), LH (0.01-1.0 ng ml(-1)), Long R3 insulin-like growth factor I (IGF-I) (10, 100 ng ml(-1)) and insulin (1, 10 ng ml(-1)) on the number of cells and steroidogenesis were examined. The purity of the theca cell preparation was verified biochemically and histologically. Co-cultures contained 50x10(3) viable cells per well in granulosa to theca cell ratio of 4:1. Wells containing granulosa cells only were supplemented with 'physiological' doses of androstenedione or 100 ng ml(-1). Oestradiol production by co-cultures was compared with the sum of the oestradiol synthesized by granulosa and theca cells cultured separately. Oestradiol and androstenedione production continued throughout culture. High plating density decreased steroid production (P < 0.01). LH increased androstenedione (P < 0.001) and oestradiol (P < 0.05) synthesis and the sensitivity of the cells increased with time in culture. Oestradiol production was increased by 10 ng IGF-I ml(-1) (P < 0.001) but androstenedione required 100 ng ml(-1) (P < 0.001). Co-cultures produced more oestradiol than the sum of oestradiol synthesized by theca and granulosa cells cultured separately (P < 0. 001), irrespective of the androstenedione dose. This serum-free culture system for pig theca cells maintained in vivo steroidogenesis and gonadotrophin responsiveness. Thecal androstenedione and oestradiol production were differentially regulated and were primarily stimulated by LH and IGF-I, respectively. Theca-granulosa cell interactions stimulated oestradiol synthesis and this interaction was mediated by factors additional to the provision of thecal androgen substrate to granulosa cells.  相似文献   

7.
Recent evidence suggests that a regulated insulin-like growth factor (IGF) system mediates the effects of estrogen, promoting the proliferation and differentiation of specific uterine cell types throughout the estrous cycle and during gestation in the rodent. Previous studies have shown that IGFs are differentially expressed in the mouse uterus during the periimplantation period. In the current study, we examined the expression of IGF binding protein-4 (IGFBP-4), IGF-I receptor (IGF-IR), and IGF-I in the mouse uterus throughout the estrous cycle. Ligand blot analysis was conducted on uterine homogenates using [125I]IGF-I. IGFBP-4 was detected in all uterine homogenates, varying in intensity throughout the estrous cycle. In situ hybridization studies at metestrus and diestrus demonstrated an intense IGFBP-4 mRNA signal in antimesometrial stromal cells between the luminal epithelium and the myometrium, but at proestrus and estrus, no IGFBP-4 signal was detected. No IGF-I mRNA was detected at any stage of the estrous cycle by in situ hybridization. However, by RT-PCR analysis, IGF-I mRNA was detected at all stages of the estrous cycle. RT-PCR analysis also showed IGF-IR mRNA throughout the estrous cycle. Using immunohistochemistry, IGF-IR immunostaining was detected throughout the estrous cycle and on days 2-7 of gestation, but was restricted to the glandular epithelium. These results suggest that uterine IGFBP-4 expression may not be dependent on uterine IGF-I expression. They also suggest that IGFBP-4 may play a role in uterine physiology independent of the inhibition of IGF-I action, and that IGF-IR is constitutively expressed in the mouse uterus.  相似文献   

8.
The components of the insulin-like growth factor (IGF) axis and their roles in regulating proliferation and differentiation of the human colon adenocarcinoma cell line, Caco-2, have been investigated. Caco-2 cells proliferated in serum-free medium at 75% the rate observed in medium containing 10% fetal bovine serum. IGF-I (10 nM) increased Caco-2 cell growth in serum-free medium, but not to the rate seen with serum. Multiple IGF-II mRNA species were produced by Caco-2 cells, but IGF-I mRNA was undetectable. Secretion of radioimmunoassayable IGF-II corresponded with steady-state levels of IGF-II mRNA, neither of which was observed to change markedly over the course of 16 days of Caco-2 cell differentiation. Levels of sucrase-isomaltase mRNA, a marker for enterocytic differentiation, increased 12-fold between days 5 and 16 of culture. Northern blotting of total RNA and ligand blot and immunoblot analyses of serum-free conditioned medium revealed that Caco-2 cells produce several IGF binding proteins (IGFBPs), including IGFBP-2, -3, and -4, as well as a 31,000 M, species that was not identified. The pattern of IGFBP secretion changed dramatically during Caco-2 cell differentiation: IGFBP-3 and IGFBP-2 increased 8.5-fold and 5-fold, respectively, whereas IGFBP-4 and the 31,000 M, species decreased 43% and 90%. Caco-2 cell clones stably transfected with a human IGFBP-4 cDNA construct exhibited a 60% increase in steady-state level of IGFBP-4 mRNA, and secreted twice as much IGFBP-4 protein as controls. Moreover, IGFBP-4-overexpressing cells proliferated at only 25% the rate of control cells in serum-free medium, in conjunction with a 70% increase in expression of sucrase-isomaltase. In summary, these studies indicate that a complex IGF axis is involved in autocrine regulation of Caco-2 cell proliferation and differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study 32P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyse rat Sm-C/IGF-I and IGF-II mRNAs in poly(A+) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobases (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. The abundance of a 7.5-kb Sm-C/IGF-I mRNA in poly(A+) RNAs from adult rat liver was 10-50-fold higher than in other adult rat tissues which provides further evidence that in the adult rat the liver is a major site of Sm-C/IGF-I synthesis and source of circulating Sm-C/IGF-I. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A+) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. Some samples of adult rat intestine contained the 4.7- and 3.9-kb IGF-II mRNAs and some samples of adult liver and lung contained the 4.7-kb mRNA. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.  相似文献   

10.
Cellular proliferation is a dominant aspect of ovarian follicular development in the rat, and insulin-like growth factor I (IGF-I) has been proposed as a mediator of cellular growth and differentiation in the ovary. An SV40-transformed rat granulosa cell line (RGA-41S) has been established as a model for studies on dividing cells of granulosa origin. Granulosa cells from the ovaries of immature diethylstilbestrol-treated rats were infected with the tsA255 mutant of SV40, followed by cloning in serum-free medium to select transformed cell lines which were serum independent. At the permissive temperature (33 C), RGA-41S cells exhibited a transformed phenotype and rapidly formed high density multilayers of compact cells that readily overgrew nontransformed cells. At the nonpermissive temperature (40 C) cell replication declined and division ceased after 4 days. Furthermore, at 40 C the cells grew as a monolayer and assumed a tetrahedral shape with a high cytoplasm-to-nucleus ratio, and displayed reduced ability to overgrow nontransformed cells. The transformed ovarian cells did not express detectable gonadotropin receptors and steroidogenic activity but retained their epithelial phenotype as demonstrated by cytokeratin staining of the cytoskeleton, the presence of microvilli, and the formation of tight junctions between cells. In support of the proposed autocrine-paracrine actions of IGF-I in the ovary, assay of conditioned serum-free culture medium revealed secretion of IGF-I-immunoreactive material by RGA-41S cells. HPLC-purified IGF-I immunoreactivity from these cells eluted with the same retention time as recombinant human IGF-I. When hybridized with a 32P-labeled rat IGF-I cDNA probe, poly(A)+ mRNA prepared from RGA-41S cells grown at both temperatures showed the typical three size classes of IGF-I mRNA on Northern blots (7.5, 1.7, and 0.8-1.2 kilobase kb), although the levels were somewhat higher at 33 C. The presence of IGF-I receptors in transformed cells was demonstrated by specific 125I-IGF-I binding to intact cells. Scatchard analysis indicated a single class of high affinity receptors at a density of 10(5) binding sites per cell and a dissociation constant (Kd) = 0.52 x 10(-9) M. Furthermore, hybridization of a 32P-labeled IGF-I receptor probe to Northern blots of poly(A+) RNA prepared from cells grown at 33 C and 40 C revealed an 11-kilobase rat IGF-I receptor mRNA. Physiological concentrations of IGF-I increased [3H]aminoisobutyric acid uptake by RGA-41S cells grown at either temperature, attesting to the retention of responsiveness to IGF-I in these transformed granulosa cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The effects of dexamethasone (Dex) on insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 production were investigated in primary cultures of rat hepatocytes. Dex enhanced the secretion of IGFBP-1 as measured by ligand blot analysis but did not show any prominent effect on immunoreactive IGF-I secretion. EC50 of Dex on IGFBP-1 secretion was calculated to be 3 x 10(-8) M. The content of IGFBP-1 mRNA in the cells increased greatly in the presence of Dex but the IGF-I mRNA content did not change significantly under the same conditions. Insulin showed the opposite effect of Dex by decreasing the production of IGFBP-1 and the cellular content of IGFBP-1 mRNA. This effect of insulin was observed also with Dex in the medium. These results show that the gene expression of IGF-I and IGFBP-1 is differently regulated by glucocorticoids and insulin in primary cultures of rat hepatocytes. The results most possibly explain the in vivo effects of glucocorticoids and insulin in regulation of IGF-I and IGFBP-1 production by liver.  相似文献   

12.
Rat insulin-like growth factor-I (IGF-I), a serum polypeptide with growth promoting activity, was isolated from rat serum by a combination of acid/ethanol extraction, affinity chromatography, and a series of reversed phase high performance liquid chromatography, cation exchange, and reversed phase. All peptide fragments produced by chymotrypsin digestion of reduced and carboxymethylated rat IGF-I were amino acid sequenced and compared with the sequence of human IGF-I. Three out of 70 of the rat amino acid residues differed from those of human IGF-I as follows: Asp20----Pro, Ser35----Ile and Ala67----Thr. Purified rat IGF-I cross-reacted with polyclonal anti-human IGF-I antibody 75% as compared to human IGF-I, but it cross-reacted only 3% with monoclonal anti-human IGF-I antibody. Thus, it is possible to monitor the metabolic fate of human IGF-I, when injected into rats, without interference by endogenous rat IGF-I. Rat IGF-I showed 65% activity in the radioreceptor, 28.6% activity in the lipogenesis and 22.5% activity in the free fatty acid release inhibition assays as compared to human IGF-I on a protein quantity basis.  相似文献   

13.
Mouse neuroblastoma N18 cells contain specific high affinity insulin and insulin-like growth factor-I (IGF-I) receptors. Insulin and IGF-I induce phosphorylation, in intact cells, of their respective receptor beta subunits. The insulin receptor beta subunit is represented by a 95-kDa phosphoprotein that is recognized by a specific antiserum (B10). The IGF-I receptor beta subunit is represented by two phosphoproteins of molecular mass 95 and 105 kDa. The hormone-induced phosphorylation was rapid and dose-dependent occurring on both phosphoserine and phosphotyrosine residues. In addition, both insulin and IGF-I induced phosphorylation of an endogenous protein of molecular mass 185 kDa (pp185). The rapidity and dose dependency of the phosphorylation of pp185 suggested that it may represent a common endogenous substrate for the insulin and IGF-I receptors in these neural-derived cells. Phosphorylation was primarily on phosphoserine and phosphotyrosine residues. pp185 did not absorb to wheat germ agglutinin-agarose and was not stimulated by either epidermal growth factor or platelet-derived growth factor. The finding of pp185 in these neural-related cells as well as in non-neural tissues suggests that it may represent a ubiquitous endogenous substrate for both the insulin and IGF-I receptor kinases.  相似文献   

14.
The effects of insulin-like growth factor-II (IGF-II) on the proliferation and differentiation of ovarian granulosa cells were studied in cultured human and porcine granulosa cells. IGF-II significantly increased basal progesterone secretion in granulosa cells at concentrations of 1-100 ng/ml. A stimulatory effect was also observed in gonadotropin-stimulated porcine granulosa cells treated with IGF-II. The secretion of estradiol by basal and gonadotropin-stimulated porcine granulosa cells was also significantly increased by adding IGF-II. IGF-II led to dose-dependent increases in [3H]thymidine incorporation into DNA and in the number of granulosa cells. To further characterize the cellular mechanisms underlying the stimulatory effects of IGF-II on the proliferation and differentiation of granulosa cells, we investigated the intermediary roles of cyclic AMP and intracellular Ca2+ concentration ([Ca2+]i). Treatment with 100 ng/ml IGF-II produced a significant increase in the basal accumulation of cyclic AMP in porcine granulosa cells. However, no change of [Ca2+]i by IGF-II was noted. IGF-II produced effects in accumulation that were similar to those of IGF-I. Our findings suggest that IGF-II may be a general stimulator in the proliferation and differentiation of granulosa cells, and that cyclic AMP may be a second messenger for the effects of IGF-II in ovarian granulosa cells.  相似文献   

15.
Estrogen induces insulin-like growth factor-I expression in the rat uterus   总被引:14,自引:0,他引:14  
The inability to convincingly demonstrate a mitogenic effect of estrogen on isolated uterine cells in culture suggests that autocrine or paracrine growth factors may be important in the estrogen-induced uterine proliferative response. Here we report that uterine expression of insulin-like growth factor-I (IGF-I), an important mediator of GH action, is increased after 17 beta-estradiol (5 micrograms/100 g bw, ip) administration to ovariectomized prepubertal rats. An increase in uterine IGF-I mRNA abundance, approximately 14-fold above untreated controls, was apparent 6 h after estrogen administration and the level achieved exceeded that seen in the uterus from intact mature rats during diestrus. In contrast to the increase in IGF-I expression in the uterus, no significant change in serum IGF-I concentration or hepatic or renal IGF-I mRNA abundance was demonstrable after 17 beta-estradiol injection of ovariectomized prepubertal rats. The increase in uterine IGF-I expression, was similar in both pituitary-intact and hypophysectomized, ovariectomized rats. We believe this is the first report of induction of IGF-I expression by estrogen in vivo. As such, the finding expands the role and significance of IGF-I as a mediator of growth beyond that related to GH.  相似文献   

16.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

17.
1. Mammary tissue from pregnant rat presents low and high affinity IGF-I functional receptors. 2. Mammary explants from pregnant and lactating rats secrete IGF-I and its production was related to the developmental stage of the gland. 3. An inverse relationship between IGF-I production and tissue binding capacity was observed.  相似文献   

18.
19.
Insulin-like growth factor binding protein-6 binds insulin-like growth factor-II with a marked preferential affinity over insulin-like growth factor-I. The kinetic basis of this binding preference was studied using surface plasmon resonance. Binding of insulin-like growth factor-I and insulin-like growth factor-II to immobilized insulin-like growth factor binding protein-6 fitted a two-site binding kinetic model. Insulin-like growth factor-I and insulin-like growth factor-II association rates were similar whereas the dissociation rate was approximately 60-fold lower for insulin-like growth factor-II, resulting in a higher equilibrium binding affinity for insulin-like growth factor-II. The equilibrium binding affinities of a series of insulin-like growth factor-II mutants were also explained by differential dissociation kinetics. O-glycosylation had a small effect on the association kinetics of insulin-like growth factor binding protein-6. The insulin-like growth factor binding properties of insulin-like growth factor binding protein-6 are explained by differential dissociation kinetics.  相似文献   

20.
We have reported previously that insulin causes a complete but reversible desensitization to insulin action in rat hepatoma HTC cells in tissue culture, and that this insulin resistance is mediated by postbinding mechanisms rather than receptor down-regulation (Heaton, J. H., and Gelehrter, T. D. (1981) J. Biol. Chem. 256, 12257-12262). We report here that insulin causes a similar desensitization to the induction of tyrosine aminotransferase by the insulin-like growth factors IGF-I and IGF-II isolated from human plasma, and by multiplication-stimulating activity, the rat homologue of IGF-II. The results of both competition-binding studies and affinity cross-linking experiments indicate that insulin-like growth factors (IGFs) bind primarily to IGF receptors rather than to insulin receptors. The low concentrations at which these factors induce transaminase is consistent with their acting primarily via IGF receptors. This is confirmed by experiments utilizing anti-insulin receptor antibody which both inhibits 125I-insulin binding and shifts the concentration dependence of insulin induction of tyrosine aminotransferase to the right. This same immunoglobulin does not inhibit 125I-multiplication-stimulating activity binding and only minimally inhibits 125I-IGF-I binding. Anti-insulin receptor antibody also does not significantly shift the concentration dependence for the IGFs, suggesting that IGFs induce transaminase by acting via IGF receptors. Although insulin down regulates insulin receptors, it does not decrease IGF-I or IGF-II binding. We conclude that insulin causes desensitization of HTC cells to IGFs by affecting a postbinding step in IGF action, which may be common to the actions of both insulin and insulin-like growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号