首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies on the nitrite uptake capability of a mutant of Synechococcus sp. strain PCC 7942 lacking the ATP-binding cassette-type nitrate-nitrite-bispecific transporter revealed the occurrence of a nitrite-specific active transport system with an apparent Km (NO2) of about 20 μM. Similar to the nitrate-nitrite-bispecific transporter, the nitrite-specific transporter was reversibly inhibited by ammonium in the medium.  相似文献   

2.
3.
Phosphoribulokinase (PRK) was purified to electrophoretic homogeneityfrom Synechococcus PCC7942 with high specific activity. Molecularmasses of the native enzyme and its subunit were 178 and 42kDa, respectively. Cys-17 and Cys-38 were conserved in the cyanobacterialPRK, but 18 amino acid residues between them were missing amongthe 40 residues found in higher plant PRKs. (Received February 1, 1995; Accepted July 27, 1995)  相似文献   

4.
The unicellular cyanobacteria, Synechococcus sp. strains PCC7942and PCC6301, have two small RNA-binding proteins, Rbp1 and Rbp2.In this study, native gel electrophoresis of the nuclease-treatedSynechococcus cell extracts showed that both Rbps are associatedin vivo with RNA but not with DNA. This indicates that theyare bona fide RNA-binding proteins. To address the functionof Rbps, we have characterized the mutants deficient in Rbp1or Rbp2. The Rbp1 deficient cells showed the same growth curve,cell color and cell viability as the wild-type strain at 30°C.The Rbp2-less mutant also grew well as wild-type but exhibiteda yellow-green color, and its cell viability was significantlyreduced. On exposure of the Rbp1-deficient mutant cells to atemperature of 10°C for one week, cell viability was completelylost. Western blot analysis showed that Rbp1 increases onlyin response to a temperature shift from 30 to 10°C, whereasRbp2 accumulates at a constant rate at cold temperature. Interestingly,translation elongation factor Tu was significantly decreasedin Rbp2-deficient cells but not in Rbp1-deficient cells. Thus,each Rbp appears to have a distinct role in cellular function. (Received June 28, 1999; Accepted September 24, 1999)  相似文献   

5.
The cyanobacterium Synechococcus sp. strain PCC7942 has three dnaK homologues (dnaK1, dnaK2, and dnaK3), and a gene disruption experiment was carried out for each dnaK gene by inserting an antibiotic resistance marker. Our findings revealed that DnaK1 was not essential for normal growth, whereas DnaK2 and DnaK3 were essential. We also examined the effect of heat shock on the levels of these three DnaK and GroEL proteins and found a varied response to heat shock, with levels depending on each protein. The DnaK2 and GroEL proteins exhibited a typical heat shock response, that is, their synthesis increased upon temperature upshift. In contrast, the synthesis of DnaK1 and DnaK3 did not respond to heat shock; in fact, the level of DnaK1 protein decreased. We also analyzed the effect of overproduction of each DnaK protein in Escherichia coli cells using an inducible expression system. Overproduction of DnaK1 or DnaK2 resulted in defects in cell septation and formation of cell filaments. On the other hand, overproduction of DnaK3 did not result in filamentous cells; rather a swollen and twisted cell morphology was observed. When expressed in an E. coli dnaK756 mutant, dnaK2 could suppress the growth deficiency at the nonpermissive temperature, while dnaK1 and dnaK3 could not suppress this phenotype. On the contrary, overproduction of DnaK1 or DnaK3 resulted in growth inhibition at the permissive temperature. These results suggest that different types of Hsp70 in the same cellular compartment have specific functions in the cell.  相似文献   

6.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

7.
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35°C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 μM·min−1, respectively. The apparent Km and kcat/Km values for Reactive Blue 5 were 3.6 μM and 1.2 × 107 M−1 s−1, respectively, while the apparent Km and kcat/Km values for H2O2 were 5.8 μM and 6.6 × 106 M−1 s−1, respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2- to ∼50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes.In textile, food, and dyestuff industries, reactive dyes such as azo and anthraquinone (AQ) and pthalocyanine-based dyes constitute one of the extensively used classes of synthetic dyes. However, it has been estimated that approximately 50% of the applied reactive dye is wasted because of hydrolysis during the dyeing process (26, 35). This results in a great effluent problem for the industries because of the recalcitrant nature of these dyes. With increased public concern and ecological awareness, in addition to stricter legislative control of wastewater discharge in recent years, there is an increased interest in various methods of dye decolorization. Dye decolorization using physicochemical processes such as coagulation, adsorption, and oxidation with ozone has proved to be effective. However, these processes are usually expensive, generate large volumes of sludge, and require the addition of environmentally hazardous chemical additives (26). There are several reports of microorganisms capable of decolorizing synthetic dyes. This has been attributed to their growth and production of enzymes such as laccase (1, 9, 40), azoreductases (3), and peroxidases, for example, lignin peroxidase (12, 25, 36), manganese peroxidase (10, 38), and versatile peroxidase (16). However, most of the synthetic dyes are xenobiotic compounds that are poorly degraded using the typical biological aerobic treatments. Furthermore, microbial anaerobic reductions of synthetic dyes are known to generate compounds such as aromatic amines that are generally more toxic than the dyes themselves (3). Therefore, for environmental safety, the use of enzymes instead of enzyme-producing microorganisms presents several advantages such as increased enzyme production, enhanced stability and/or activity, and lower costs by using recombinant DNA technology.Peroxidases are heme-containing enzymes that use hydrogen peroxide (H2O2) as the electron acceptor to catalyze numerous oxidative reactions. They are found widely in nature, both in prokaryotes and eukaryotes, and are largely grouped into plant and animal superfamilies. They are one of the most studied enzymes because of their inherent spectroscopic properties and potential use in both diagnostic and bioindustrial applications. In particular, their ability to degrade a wide range of substrates has recently stimulated interest in their potential application in environmental bioremediation of recalcitrant and xenobiotic wastes (10, 25, 26).Recently, a novel family of heme peroxidases characterized by broad dye decolorization activity has been identified in various fungal species such as Thanatephorus cucumeris Dec1 (18), Termitomyces albuminosus (15), Polyporaceae sp. (15), Pleurotus ostreatus (13), and Marasmius scorodonius (27). Because of their broad substrate specificity, low pH optima, lack of a conserved active site distal histidine, and structural divergence from classical plant and animal peroxidases (32), these proteins have been proposed to belong to the novel DyP peroxidase family. Over 400 proteins of prokaryotic and eukaryotic origins have been grouped in the DyP peroxidase family, Pfam 04261 (http://pfam.sanger.ac.uk/), and it is apparent from genome databases that many species possess DyP. The ability of these proteins to effectively degrade hydroxyl-free AQ and azo dyes as well as the specificity for typical peroxidase substrates illustrates their potential use in the bioremediation of wastewater contaminated with synthetic dyes. However, with the exception of a DyP from the plant pathogenic fungus T. cucumeris Dec1 (an anamorph of Rhizoctonia solani, a very common fungal plant pathogen), which has been characterized extensively (18, 28, 30-32, 34), little information is available on other members of the DyP family. In particular, studies on bacterial DyPs have been limited to only the automatically translated sequence or structural data (41, 42). Within the context of further understanding the structure-function and potential applicability of these novel types of enzymes in general, we have taken an interest in DyP-type enzymes, particularly, the less known bacterial groups.Cyanobacteria (blue-green algae) represent the most primitive, oxygenic, plant-type photosynthetic organisms and are thought to be involved in greater than 20 to 30% of the global photosynthetic primary production of biomass, accompanied by the cycling of oxygen. Anabaena sp. strain PCC 7120 is a filamentous, heterocyst-forming cyanobacterium capable of nitrogen fixation and has long been used as a model organism to study the prokaryotic genetics and physiology of cellular differentiation, pattern formation, and nitrogen fixation (14). This strain''s genome sequence is complete and annotated (17). From bioinformatics analysis of the Anabaena sp. strain PCC 7120 genome, we identified an open reading frame (ORF), alr1585, encoding a putative heme-dependent peroxidase exhibiting homology to T. cucumeris Dec1, DyP. Here, we report on the characterization of this novel bacterial DyP, designated AnaPX (for Anabaena peroxidase), from the cyanobacterium Anabaena sp. strain PCC 7120, with broad specificity for both aromatic compounds and synthetic dyes such as AQ dyes.  相似文献   

8.
Coexpression of pairs of nonhaemolytic H1yA mutants in the recombination-deficient (recA) strain Escherichia coli HB101 resulted in a partial reconstitution of haemolytic activity, indicating that the mutation in one H1yA molecule can be complemented by the corresponding wild-type sequence in the other mutant HlyA molecule and vice versa. This suggests that two or more HlyA molecules aggregate prior to pore formation. Partial reconstitution of the haemolytic activity was obtained by the combined expression of a nonhaemolytic HlyA derivative containing a deletion of five repeat units in the repeat domain and several nonhaemolytic HlyA mutants affected in the pore-forming hydrophobic region. The simultaneous expression of two inactive mutant HlyA proteins affected in the region at which HlyA is covalently modified by HlyC and the repeat domain, respectively, resulted in a haemolytic phenotype on blood agar plates comparable to that of wild-type haemolysin. However, complementation was not possible between pairs of HlyA molecules containing site-directed mutations in the hydrophobic region and the modification region, respectively. In addition, no complementation was observed between HlyA mutants with specific mutations at different sites of the same functional domain, i.e. within the hydrophobic region, the modification region or the repeat domain. The aggregation of the HlyA molecules appears to take place after secretion, since no extracellular haemolytic activity was detected when a truncated but active HlyA lacking the C-terminal secretion sequence was expressed together with a non-haemolytic but transport-competent HlyA mutant containing a deletion in the repeat domain.  相似文献   

9.
A mutant of the cyanobacterium Synechococcus sp. strain PCC 7942 carrying a disrupted gene encoding glucose-6-phosphate dehydrogenase (zwf) produced no detectable glucose-6-phosphate dehydrogenase as assessed by enzyme assay and Western blot (immunoblot) analysis. This mutant exhibited significantly impaired dark viability.  相似文献   

10.
11.
12.
13.
以单细胞蓝藻聚球藻Synechococcussp.PCC7942为材料,利用甲基磺酸乙酯(EMS)进行化学诱变获得了一个高CO2 需求突变株。它能在 4%CO2 下生长而不能在空气中生长。对突变株的初检表明:其回复突变率约为 10 -7。该突变株从高CO2 条件下转到空气中后,细胞在 2~ 3d内逐渐趋于死亡;其光合作用对外源无机碳的依赖性高于野生型细胞,碳酸酐酶活性也低于野生型细胞。在超微结构水平,突变株细胞内出现了不同类型的异常羧体:有的为棒状;有的为不规则状;有的为 空羧体",而且,类囊体周围糖原颗粒增多。进一步说明该突变株在CO2 吸收和利用功能上有缺陷。此外,对低碳条件对羧体的诱导及羧体的生物发生也作了一些探讨  相似文献   

14.
The active nitrate transport system of the cyanobacterium Synechococcussp. PCC7942 is encoded by the four genes nrtA, nrtB, nrtC andnrtD. It is essential for the growth of the cyanobacterium atphysiological concentrations of nitrate and has been shown tobe involved in the active transport of nitrite as well. Thededuced amino acid sequences of the NrtB, NrtC and NrtD proteinsindicate that the transporter is a member of the ABC (ATP-bindingcassette) superfamily of active transporters. Among the prokaryoticABC transporters, the cyanobacterial nitrate/nitrite transporteris unique in having a membrane-bound protein NrtA and an NrtA-likeextra domain linked to one of the ATP-binding subunits (C-terminaldomain of NrtC). Molecular biological, biochemical and physiologicalstudies suggest that NrtA is the substrate-binding protein requiredfor the transport of nitrate/nitrite and that the C-terminaldomain of NrtC has a regulatory role. Comparison of the structuresof nitrate transporters from eukaryotic and prokaryotic, photosyntheticand non-photosynthetic organisms indicate that the nrt nitrate/nitritetransporter represents a prokaryotic nitrate transporter distinctfrom the nitrate transporters of eukaryotes. 1Recipient of the JSPP Young Investigator Award, 1994.  相似文献   

15.
报道了室温、空气环境下聚球藻Synechococcus sp.PCC7942氢酶的分离纯化.经过超声破碎、超速离心、离子交换层析、疏水层析及凝胶层析等步骤,氢酶被纯化了218倍,得率为6.5%,比活为1.46U·mg-1蛋白.纯化氢酶的SDS-PAGE图显示五条蛋白带,分子量约为83kDa,60kDa,47kDa,30kDa和27kDa.该氢酶为可溶性的双向氢酶,其催化放氢的最佳电子供体为还原态的甲基紫精,最适温度50℃,最适pH8.0.  相似文献   

16.
17.
Intact cells and crude homogenates of high (1% CO2) and low dissolved inorganic carbon (Ci) (30-50 microliters per liter of CO2) grown Synechococcus PCC7942 have carbonic anhydrase (CA)-like activity, which enables them to catalyze the exchange of 18O from CO2 to H2O. This activity was studied using a mass spectrometer coupled to a cuvette with a membrane inlet system. Intact high and low Ci cells were found to contain CA activity, separated from the medium by a membrane which is preferentially permeable to CO2. This activity is most apparent in the light, where 18O-labeled CO2 species are being taken up by the cells but the effluxing CO2 has lost most of its label to water. In the dark, low Ci cells catalyze the depletion of the 18O enrichment of CO2 and this activity is inhibited by both ethoxyzolamide and 2-(trifluoromethoxy)carbonyl cyanide. This may occur via a common inhibition of the Ci pump and the Ci pump is proposed as a potential site for the exchange of 18O. CA activity was measurable in homogenates of both cell types but was 5- to 10-fold higher in low Ci cells. This was inhibited by ethoxyzolamide with an I50 of 50 to 100 micromolar in both low and high Ci cells. A large proportion of the internal CA activity appears to be pelletable in nature. This pelletability is increased by the presence of Mg2+ in a manner similar to that of ribulose bisphosphate carboxylase-oxygenase activity and chlorophyll (thylakoids) and may be the result of nonspecific aggregation. Separation of crude homogenates on sucrose gradients is consistent with the notion that CA and ribulose bisphosphate carboxylase-oxygenase activity may be associated with the same pelletable fraction. However, we cannot unequivocally establish that CA is located within the carboxysome. The sucrose gradients show the presence of separate soluble and pelletable CA activity. This may be due to the presence of separate forms of the enzyme or may arise from the same pelletable association which is unstable during extraction.  相似文献   

18.
Yu JW  Price GD  Song L  Badger MR 《Plant physiology》1992,100(2):794-800
The Type II mutants of the cyanobacterium Synechococcus PCC7942 (G.D. Price, M.R. Badger [1989] Plant Physiol 91: 514-525) are able to accumulate a large pool of inorganic carbon inside the cell, but are unable to utilize it for CO2 fixation, resulting in a high CO2-requiring phenotype. We have isolated a 3.5-kb BamHI clone (pT2) that complements the Type II mutants, and complementation analysis with DNA subclones indicated that the complementing region was located in the 0.75-kb XhoI-Bg/II fragment. This same region hybridized to the chloroplastic carbonic anhydrase (CA) gene from spinach on Southern blots and to a mRNA of approximate 1 kb on northern blots. Restriction mapping and sequence analysis revealed that pT2 is the same as a genomic clone (pBM3.8) that complements another high CO2-requiring (temperature sensitive) mutant, C3P-O (E. Suzuki, H. Fukuzawa, S. Miyachi [1991] Mol Gen Genet 226: 401-408). Recently, a 272-amino acid open reading frame showing 22% homology with pea and spinach chloroplast CA genes was identified in clone pBM3.8 (H. Fukuzawa, E. Suzuki, Y. Komukal, S. Miyachi [1992] Proc Natl Acad Sci USA 89: 4437-4441). CA activity was detected in Escherichia coli cells transformed with subclones of pT2 (pT2-A and pT2-A1) containing the HindIII-Bg/II fragment, and the expressed CA has properties similar to those of the CA activity associated with carboxysomes purified from Synechococcus PCC7942 (G.D. Price, J.R. Coleman, M.R. Badger [1992] Plant Physiol 100: 784-793). Therefore, it is reasonable to conclude that the HindIII-Bg/II fragment codes for the carboxysomal CA gene product. The result is discussed in the context of the role that carboxysomal CA plays in the operation of the CO2-concentrating mechanism in cyanobacteria.  相似文献   

19.
Phosphate Uptake in the Cyanobacterium Synechococcus R-2 PCC 7942   总被引:4,自引:0,他引:4  
Phosphate uptake rates in Synechococcus R-2 in BG-11 media (anitrate-based medium, not phosphate limited) were measured usingcells grown semi-continuously and in continuous culture. Netuptake of phosphate is proportional to external concentration.Growing cells at pHo 10 have a net uptake rate of about 600pmol m–2 s–1 phosphate, but the isotopic flux for32P phosphate was about 4 nmol m–2 s–1. There appearsto be a constitutive over-capacity for phosphate uptake. TheKm and Vmax, of the saturable component were not significantlydifferent at pHo 7.5 and 10, hence the transport system probablyrecognizes both H2PO4and HPO2–4. The intracellularinorganic phosphate concentration is about 3 to 10 mol m–3,but there is an intracellular polyphosphate store of about 400mol m–3. Intracellular inorganic phosphate is 25 to 50kJ mol–1 from electrochemical equilibrium in both thelight and dark and at pHo 7.5 and 10. Phosphate uptake is veryslow in the dark ( 100 pmol m–2 s–1) and is light-activated(pHo 7.51.3 nmol m–2 s–1, pHo 10600 pmol m–2s–1). Uptake has an irreversible requirement for Mg2+in the medium. Uptake in the light is strongly Na+-dependent.Phosphate uptake was negatively electrogenic (net negative chargetaken up when transporting phosphate) at pHo 7.5, but positivelyelectrogenic at pHo 10. This seems to exclude a sodium motiveforce driven mechanism. An ATP-driven phosphate uptake mechanismneeds to have a stoichiometry of one phosphate taken up perATP (1 PO4 in/ATP) to be thermodynamically possible under allthe conditions tested in the present study. (Received June 16, 1997; Accepted September 4, 1997)  相似文献   

20.
During photoautotrophic growth under CO2-limited conditions, cells of Synechococcus sp. PCC7942 excreted into the medium about 30% of the nitrite produced by reduction of nitrate. No nitrite was excreted under CO2-sufficient conditions. After transfer of high-CO2-grown cells to CO2-limited conditions, nitrite reductase activity started to decline within 0.5 h and decreased to 50% of the initial level in 3 h, whereas nitrate reductase activity was virtually unchanged. Nitrite started to accumulate in the medium about 3 h after the transfer of the cells to CO2-limited conditions and reached a concentration of >0.4 mM at 17 h. These findings suggested that the nitrite excretion was due to an imbalance of the activities of nitrite reductase and nitrate reductase. Since ammonium, the product of nitrite reduction, was not detected in the medium, it was concluded that the step of nitrite reduction limits the rate of nitrate assimilation under CO2-limited conditions. The extent of decrease in nitrite reductase activity under CO2-limited conditions was much larger than that caused by rifampicin (an inhibitor of RNA synthesis) treatment under high-CO2 conditions. Addition of CO2, in the form of sodium bicarbonate, to the CO2-limited culture increased the nitrite reductase activity, but rifampicin inhibited this increase. These findings suggested the presence of a mechanism that irreversibly inactivates nitrite reductase under CO2-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号