首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

2.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   

3.
4.
Specially constructed soil-freezing growth boxes were used to study the effects of the intensity and duration of soil freezing on root injury and the survival of white lupin seedlings of different ages under controlled conditions. The extent of root damage depended on both the intensity of soil freezing and the stage of seedling development (measured as the extent of lignification of the central stele of the primary root). Seedlings whose secondary root development was well advanced, and in which the endodermis was completely lignified, survived intense soil freezing intact. Young seedlings with weakly lignified roots were damaged by moderate soil freezing (> 5 days at ?1°C) and killed by more intense freezing (5 days at ?2°C). The extent of root development and ligmfkation was correlated with the number of leaf primordia produced at the shoot apex so that the susceptibility to soil freezing damage could be accurately predicted by a simple physiological/leaf production model.  相似文献   

5.
European cultivars of white lupin (Lupinus albus L.) grow poorly in limed or calcareous soils. However, Egyptian genotypes are grown successfully in highly calcareous soil and show no stress symptoms. To examine their physiological responses to alkaline soil and develop potential screens for tolerance, three experiments were conducted in limed and non-limed (neutral pH) soil. Measurements included net CO2 uptake, and the partitioning of Fe2+ and Fe3+ and soluble and insoluble Ca in stem and leaf tissue. Intolerant plants showed clear symptoms of stress, whereas stress in the Egyptian genotypes and in L pilosus Murr. (a tolerant species) was less marked. Only the intolerant plants became chlorotic and this contributed to their reduced net CO2 uptake in the limed soil. In contrast, Egyptian genotypes and L pilosus showed no change in net CO2 uptake between the soils. The partitioning of Ca and Fe either resulted from the stress responses, or was itself a stress response. L pilosus and some Egyptian genotypes differed in soluble Ca concentrations compared with the intolerant cultivars, although no significant difference was apparent in the Ca partitioning of the Egyptian genotype Giza 1. In a limed soil, Giza 1 maintained its stem Fe3+ concentration at a level comparable with that of plants grown in non-limed soil, whereas stem [Fe3+] of an intolerant genotype increased. Gizal increased the percentage of plant Fe that was Fe2+ in its leaf tissue under these conditions; that of the intolerant genotype was reduced. The potential tolerance of the Egyptian genotypes through these mechanisms and the possibility of nutritional-based screens are discussed.  相似文献   

6.
Acidic exocellular class III chitinase (EC 3.2.1.14) was previously identified in healthy white lupin (Lupinus albus L.) plants and suspension-cultured cells by N-terminal microse-quencing. In this study, the detection of chitinase activity with Remazol Brilliant Violet 5R (RBV)-labelled chitin derivatives is described. Chitinase activity was observed in protein fractions of cytoplasmic or exocellular origin from roots, hypocotyls, cotyledons, and leaves of healthy white lupin plants. Using isoelectrofocusing followed by a new overlay technique with carboxymethyl chitin-RBV conjugate-containing gel, up to six different chitinase isoforms were visualised. Their activity was distributed fairly evenly within a plant with acidic isoforms predominating in cell walls and basic (or neutral) ones found intracellularly. Exocellular location of some chitinase isoforms were also confirmed by detection of their activities in intercellular washing fluids from white lupin tissues. Chitinase activity was demonstrated in culture filtrates and cell walls of suspension-cultured white lupin cells.  相似文献   

7.
Experiments at Rothamsted in the UK and Lusignan in France examined the effect of artificially modifying plant structure on the yield and date of harvest of indeterminate autumn-sown cultivars of Lupinus albus. Experiments in 1989/90 were done on the cv. Lugel at Rothamsted and those in 1990/91 on the cvs Lugel and Lunoble in both the UK and France. At Rothamsted in 1990, when the summer was warm and dry, the indeterminate cv. Lugel ripened at the end of August and yielded 5.2 t grain/ha. At Lusignan in 1991, where summer weather was also warm and dry, the two unpruned indeterminate cultivars ripened in late July and yielded c. 4.9 t grain/ ha. However, at Rothamsted in 1991, in a season which was predominantly cool and wet, the two indeterminate cultivars were not harvested until late October and yielded only 1.5 and 2.4 t/ha. Plants pruned to a semi-determinate form consisting of the mainstem plus the 1st-order branches yielded approximately the same as the unpruned inde-terminates at Rothamsted and slightly less than the indeterminates at Lusignan. The semi-determinates ripened 10 days earlier than the indeterminates at Rothamsted in 1990 and Lusignan in 1991, and 6 weeks earlier in the UK in 1991. Epigonal plants with only a mainstem inflorescence, ripened even earlier than the semi-determinates but, without branch inflorescences, produced less yield and had poorer yield stability. Where disease was not a factor, as at Rothamsted in 1990 and Lusignan in 1991, epigonal plants ripened 3 weeks earlier than the indeterminates and yielded between 1.6 and 2.6 t/ha. When the pruned epigonal plants were badly infested with Pleiochaeta, as at Rothamsted in 1991, they yielded less than 0.4 t/ha. It is concluded that indeterminate genotypes of L. albus are well adapted to the climatic conditions of Lusignan but lack yield stability further north. For the cooler northern regions of Europe, an autumn-sown, florally-determinate genotype with one order of branching would produce adequate yield and have an acceptably early harvest date and yield stability. Such a genotype would have agricultural and economic value as a new protein break crop with a low requirement for nitrogen fertiliser.  相似文献   

8.
Current agronomic cultivars of white lupin (Lupinus albus) are intolerant of calcareous or limed soils. In these soils, high pH, bicarbonate (HCO3?), and calcium (Ca) concentrations are the major chemical stresses to the root system. To determine the responses of the root system to these factors, evaluate root architecture, and compare genotypes for tolerance, a series of liquid culture experiments was completed using root chambers that allowed the study of the root system in two dimensions. Each stress condition caused changes in different parts of the root system and there was no generalised stress response. HCO3? (5 mM) had the greatest effect on cultivars intolerant of calcareous soil; it decreased the dry weight of the shoot and caused the highest percentage of tap root deaths. HCO3? also discriminated between short (determinate) and long (indeterminate) roots, as it decreased the number and density of the determinate roots only. Calcium (3 mM) affected all parts of the root system. The tap root was shortened and showed an increased tortuousness in its path compared with 1 mM Ca, although no plants suffered tap root death. The numbers and densities of the two lateral root forms were also decreased, as were the lengths of the indeterminate roots. Stress from alkaline pH (7.5) media caused a lower number and density of determinate lateral roots to be produced than at pH 6.5. The experiments demonstrated that each culture condition elicited a definable stress response. Stress conditions altered the root architecture of genotypes reported to be tolerant of calcareous soil less than in intolerant genotypes. Although soil is more complex than liquid culture, it is possible that in a calcareous or limed soil each stress condition examined may affect the overall stress of the plant, and increased tolerance may result from tolerance to a single stress.  相似文献   

9.
A digestibility trial was conducted to assess the effect of dehulling, steam-cooking and microwave-irradiation on the apparent digestibility of nutrients in white lupin (Lupinus albus) seed meal when fed to rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Six ingredients, whole lupin seed meal (LSM), dehulled LSM, dehulled LSM steam-cooked for 15 or 45 min (SC15 and SC45, respectively) and LSM microwave-irradiated at 375 or 750 W (MW375 and MW750, respectively), were evaluated for digestibility of dry matter, crude protein (CP), lipids, nitrogen-free extractives (NFE) and gross energy (GE). The diet-substitution approach was used (70% reference diet + 30% test ingredient). Faeces from each tank were collected using a settlement column. Dehulled LSM showed higher levels of proximate components (except for NFE and crude fibre), GE and phosphorus in comparison to whole LSM. Furthermore, SC15, SC45, MW375 and MW750 showed slight variations of chemical composition in comparison to dehulled LSM. Results from the digestibility trial indicated that dehulled LSM, SC15, SC45 and MW375 are suitable processing methods for the improvement of nutrients’ apparent digestibility coefficient (ADC) in whole LSM. MW750 showed a lower ADC of nutrients (except for CP and lipids for rainbow trout) in comparison with MW350 for rainbow trout and Atlantic salmon, suggesting a heat damage of the ingredient when microwave-irradiation exceeded 350 W.  相似文献   

10.
11.
A split-root system was used to investigate whether the external or internal P concentration controls root cluster formation and citrate exudation in white lupin (Lupinus albus L.) grown under controlled conditions. In spite of low P concentrations in the shoots and roots of the -P plant, its dry weight was not reduced compared with the P plant. Supplying external P (0.25 mmol/L) to one root half resulted in an increase in P concentration not only in the shoot, but also in the P-deprived root half, indicating P cycling within the plants. Omitting P from both split-root pots stimulated root cluster formation in both root halves,whereas P supply to one root half stimulated root cluster formation at the beginning of the treatment. Neither P supply to just one root half continuously nor resupply of P to one root half after 19 d of P starvation inhibited root cluster formation on the P-deprived side, although the concentration of P in this root half and shoot increased markedly. The results indicate that root cluster formation in L. albus is controlled by both shoot and root P concentrations. The rates of citrate exudation by both root halves with P deficiency were higher than those of the one root half supplied with P only. In the treatment with one root half supplied with P, the rates of citrate exudation by either the P-supplied or -deprived root halves were almost the same,regardless of P concentration in the roots. The results suggest that internal P concentration controls root cluster formation and citrate exudation in white lupin, but these processes may be regulated by different mechanisms.  相似文献   

12.
A split-root system was used to investigate whether the external or internal P concentration controls root cluster formation and citrate exudation in white lupin (Lupinus albus L.) grown under controlled conditions. In spite of low P concentrations in the shoots and roots of the -P plant, its dry weight was not reduced compared with the P plant. Supplying external P (0.25 mmol/L) to one root halfresulted in an increase in P concentration not only in the shoot, but also in the P-deprived root half, indicating P cycling within the plants. Omitting P from both split-root pots stimulated root cluster formation in both root halves,whereas P supply to one root halfstimulated root cluster formation at the beginning of the treatment. Neither P supply to just one root half continuously nor resupply of P to one root half after 19 d of P starvation inhibited root cluster formation on the P-deprived side, although the concentration of P in this root half and shoot increased markedly. The results indicate that root cluster formation in L. albus is controlled by both shoot and root P concentrations. The rates of citrate exudation by both root halves with P deficiency were higher than those of the one root half supplied with P only. In the treatment with one root half supplied with P, the rates of citrate exudation by either the P-supplied or -deprived root halves were almost the same,regardless of P concentration in the roots. The results suggest that internal P concentration controls root cluster formation and citrate exudation in white lupin, but these processes may be regulated by different mechanisms.  相似文献   

13.
A combination of 14C labelling experiments of white lupin seedlings(Lupinus albus L.) and high pressure liquid chromatography oftissue extracts indicated active biosynthesis of isoflavonoidsduring the first 2–4 d of seed germination. These weresynthesized mostly as glucosides and to a lesser extent as aglycones,with trace amounts of prenylated derivatives. There was a generaldecrease in total isoflavonoids during later stages of germination(c. until d 13), which may be ascribed to their turnover and/orexudation into the rhizosphere. In addition, exudation of isoflavonoidsby lupin seeds germinated under sterile conditions continuesfor 12 d with a preferential release of monoprenylated compounds.The relationship between the specific developmental events duringseed germination and the accumulation of certain groups of isoflavonoidsis discussed in relation to their possible role in the growthprocesses of lupin. Key words: Isoflavonoids, glucosides, aglycones, prenylated derivatives, root exudates, white lupin  相似文献   

14.
The present study investigates whether previously acquired boron(B) in mature leaves in white lupin can be retranslocated intothe rapidly growing young reproductive organs, in response toshort-term (3 d) interrupted B supply. In a preliminary experimentwith white lupin in soil culture, B concentrations in phloemexudates remained at 300–500 µM, which were substantiallyhigher than those in the xylem sap (10–30 µM). Thehigh ratios of B concentrations in phloem exudates to thosein the xylem sap were close to values published for potassiumin lupin plants. To differentiate ‘old’ B in theshoot from ‘new’ B in the root, an experiment wascarried out in which the plants were first supplied with 20µM 11B (99.34% by weight) in nutrient solution for 48d after germination (DAG) until early flowering and then transferredinto either 0.2 µM or 20 µM 10B (99.47% by weight)for 3 d. Regardless of the 10B treatments, significant levelsof 11B were found in the phloem exudates (200–300 µMin 20 µM 10B and 430 µM in 0.2 µM 10B treatment)and xylem sap over the three days even without 11B supply tothe root. In response to the 0.2 µM 10B treatment, thetranslocation of previously acquired 11B in the young (the uppermostthree leaves), matured, and old leaves was enhanced, coincidingwith the rise of 11B in the xylem sap (to >15 µM) andphloem exudates (430 µM). The evidence supports the hypothesisthat previously acquired B in the shoot was recirculated tothe root via the phloem, transferred into the xylem in the root,and transported in the xylem to the shoot. In addition, somepreviously acquired 11B in the leaves may have been translocatedinto the rapidly growing inflorescence. Phloem B transport resultedin the continued net increment of 11B in the flowers over 3d without 11B supply. However, it is still uncertain whetherthe amount of B available for recirculation is adequate to supportreproductive growth until seed maturation. Key words: 10B, 11B, B recirculation, Lupinus albus L., phloem exudate, xylem sap Received 9 October 2007; Revised 28 November 2007 Accepted 30 November 2007  相似文献   

15.
Phosphorus (P) is a major factor limiting the response of carbon acquisition of plants and ecosystems to increasing atmospheric CO2 content. An important consideration, however, is the effect of P deficiency at the low atmospheric CO2 content common in recent geological history, because plants adapted to these conditions may also be limited in their ability to respond to further increases in CO2 content. To ascertain the effects of low P on various components of photosynthesis, white lupin (Lupinus albus L.) was grown hydroponically at 200, 400 and 750 micromol mol(-1) CO2, under sufficient and deficient P supply (250 and 0.69 microM P, respectively). Increasing growth CO2 content increased photosynthesis only under sufficient growth P. Ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) content and activation state were not reduced to the same degree as the net CO2 assimilation rate (A), and the in vivo rate of electron transport was sufficient to support photosynthesis in all cases. The rate of triose phosphate use did not appear limiting either, because all the treatments continued to respond positively to a drop in oxygen levels. We conclude that, at ambient and elevated CO2 content, photosynthesis in low-P plants appears limited by the rate of ribulose biphosphate (RuBP) regeneration, probably through inhibition of the Calvin cycle. This failure of P-deficient plants to respond to rising CO2 content above 200 micromol mol(-1) indicates that P status already imposes a widespread restriction in plant responses to increases in CO2 content from the pre-industrial level to current values.  相似文献   

16.
Anthracnose caused by Colletotrichum gloeosporioides is the most serious disease of lupins (Lupinus spp). A cross was made between cultivars Tanjil (resistant) and Unicrop (susceptible) in narrow-leafed lupin (L. angustifolius). Analysis of disease reaction data on the F2 population and on the resultant F7 recombinant inbred lines suggested that Tanjil contained a single dominant gene (Lanr1) conferring resistance to anthracnose. The parents and the representative F2 plants were used to generate molecular markers liked to the Lanr1 gene using the MFLP technique. A co-dominant MFLP polymorphism linked to the Lanr1 gene was identified as a candidate marker. The bands were isolated, re-amplified by PCR, cloned and sequenced. The MFLP polymorphism was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the computer program MAPMAKER indicated that the marker was 3.5 centiMorgans (cM) from the gene Lanr1. This marker is currently being implemented for marker assisted selection in the Australian National Lupin Breeding Program.  相似文献   

17.
G. V. Hoad 《Planta》1978,142(3):287-290
Abscisic acid (ABA) was identified by combined gas liquid chromatography-mass spectrometry in sieve-tube exudate collected from the cut stylar ends of white lupin fruit. Water stress caused an increase in ABA levels in leaf, seed and pod tissues and phloem exudate. When compared with levels in extracts of these tissues, the concentration of ABA in sieve-tube sap was very high. It is suggested that ABA is actively transported out of mature leaves in the phloem and this finding is discussed in terms of the ABA balance of the plant.Abbreviations ABA abscisic acid - GLC gas liquid chromatography  相似文献   

18.
With a view to introducing white lupin (Lupinus albus L.) for cultivation in Tunisian calcareous soils, compatible indigenous rhizobia for nitrogen-fixing symbiosis were investigated and characterized. Two L. albus varieties, Mekna and Lumen, were used to trap rhizobia in soil samples collected from 56 sites with high active lime contents (0–49%). Nodulation occurred in only 15 soils. The local variety, Mekna, developed significantly more root nodules and had a trapping capacity in more soils than the imported variety Lumen. A phylogenetic analysis based on the partial 16S-23S ribosomal RNA internal transcribed spacer region (ITS) and multi-locus sequence analysis (MLSA) of three chromosomal housekeeping genes, recA, atpD and dnaK, showed that strains were affiliated to Agrobacterium, Rhizobium, and Neorhizobium, with large internal diversity, including separate lineages. Infectivity tests highlighted some nodulation specificity at the plant variety level, since the strains originating from Mekna could only nodulate this variety, while strains trapped in Lumen could nodulate both varieties. When inoculated, almost all strains resulted in a significant increase in plant shoot dry weight on L. albus. Although Agrobacterium sp. strains isolated from L. albus could nodulate and had a plant growth promoting effect, no nodA and nodC genes could be amplified. This is discussed together with the absence of bradyrhizobia and the general infrequency of L. albus–nodulating rhizobia in Tunisian soils. The adapted and efficient rhizobial strains reported here were promising candidates for inoculant development and represent a contribution towards successful cultivation of L. albus in Tunisia, especially the most promising Mekna variety.  相似文献   

19.
A rhizobox experiment was conducted to examine the P acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P-deficient conditions. We aimed to identify whether cotton is physiologically efficient at acquiring P through release of protons, phosphatases or carboxylates. Plants were pre-grown in the upper compartment of rhizoboxes filled with a sand and soil mixture to create a dense root mat against a 53 μm polyester mesh. For each species, two P treatments (0 and 20 mg P kg?1) were applied to the upper compartment in order to create P-deficient and P-sufficient plants. At harvest, the upper compartment with intact plants was used for collection of root exudates while the lower soil compartment was sliced into thin layers (1 mm) parallel to the rhizoplane. Noticeable carboxylates release was only detected for white lupin. All P-deficient plants showed a capacity to acidify their rhizosphere soil to a distance of 3 mm. The activity of acid phosphatase was significantly enhanced in the soil-root interfaces of P-stressed cotton and wheat. Under P-deficient conditions, the P depletion zone of cotton from the lower soil compartment was narrowest (<2 mm) among the species. Phosphorus fractionation of the rhizosphere soil showed that P utilized by cotton mainly come from NaHCO3–Pi and NaOH–Po pools while wheat and white lupin markedly depleted NaHCO3–Pi and HCl–P pools, and the depletion zone extended to 3 mm. Wheat also depleted NaOH–Po to a significant level irrespective of P supply. The study suggests that acquisition of soil P is enhanced through P mobilization by root exudates for white lupin, and possibly proton release and extensive roots for wheat under P deficiency. In contrast, the P acquisition of cotton was associated with increased activity of phosphatases in rhizosphere soil.  相似文献   

20.

Aims

This study aimed to determine whether white lupin adaptation to moderately calcareous soils could be enhanced by lime-tolerant plants and Bradyrhizobium strains.

Methods

Fourteen landraces from Italy, Morocco and Egypt and some cultivars were grown in moderate-lime (ML) and low-lime (LL) soil with each of two inoculants, one commercial and one including three Bradyrhizobium strains well-nodulating under ML soil (isolated from other lupin species). Grain yield and above-ground biomass were assessed in large artificial environments that mimicked field conditions. Shoot, root and nodulation traits at onset of flowering were studied in a pot experiment.

Results

ML soil severely reduced plant yield, growth and nodulation but increased the harvest index relative to LL. Top-yielding genotypes for grain yield displayed significant rank inversion across soil types (P < 0.05). Lime-tolerant genotypes reduced their nodulation in ML soil less than limesusceptible ones. Some landraces outperformed the reference lime-tolerant cultivar Giza 1 in ML soil. One Italian landrace had a lime-tolerant response across agricultural locations. The Moroccan inoculant provided greater nodulation, more shoot residues but similar grain yield in ML soil, and less grain and shoot residues in LL soil, compared with the commercial inoculant.

Conclusions

Lupin adaptation to ML soil can be improved mainly through selection of lime-tolerant plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号