首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total protein and collagen content in normal and keratoconus corneas were determined. The protein content (expressed as a function of dry weight) in all keratoconus corneal samples was lower than that found in normal corneas. However, among the 11 keratoconus corneas examined, only 7 (group A) had the same hydroxyproline content (expressed as a function of dry weight) as normal corneas; 4 others (group B) showed significantly less. In tissue culture, four strains derived from keratoconus stroma (group I) produced total protein at the same rate as cells from normal controls. Four other strains (group II), however, had a decreased rate of protein synthesis. The amount of collagenous protein synthesized per microgram DNA by group I strains was similar to that found in normal cultures, whereas it was significantly reduced in group II cultures. We suggest that group I strains represent group A corneas. Group II strains, with a reduced level of both protein and collagen synthesis, may represent group B corneas. The defect in this group appears to be decreased total synthetic activity of corneal cells. The variation in our results suggests that keratoconus is a heterogeneous disease. The heterogeneity may explain the contradictory data that exist in the literature.  相似文献   

2.
The rate of protein synthesis in metaphase-arrested cells is reduced as compared to interphase cells. The reduction occurs at the translation initiation step. Here, we show that, whereas poliovirus RNA translation is not affected by the mitotic translational block, the translation of vesicular stomatitis virus mRNAs is. In an attempt to elucidate the mechanism by which initiation of protein synthesis is reduced in mitotic cells, we found that the interaction of the mRNA 24-kDa cap-binding protein (CBP) with the mRNA 5' cap structure is reduced in mitotic cell extracts, consistent with their lower translational efficiency. Addition of cap-binding protein complex stimulated the translation of endogenous mRNA in extracts from mitotic but not interphase cells. In addition, we found that the 24-kDa CBP from mitotic cells was metabolically labeled with 32P to a lesser extent than the protein purified from interphase cells. These results are consistent with a hypothesis that the 24-kDa CBP is implicated in the inhibition of protein synthesis in metaphase-arrested cells. Possible mechanisms for this inhibition are offered.  相似文献   

3.
4.
A comparison was made of bacteriophage MS2 RNA translation in infected Escherichia coli cells and in a defined cell-free system. A number of temperature-sensitive mutants were used as hosts for viral RNA translation at permissive and restrictive temperatures. The amount of viral coat protein synthesis was determined after gel electrophoresis of proteins from the cell lysates. These results were compared to those obtained with cell-free translation assays conducted with ribosomes isolated from the same mutants. Compared with control cells, a reduced activity in vivo and in vitro was found for each mutant examined at elevated temperatures. A good correlation between the two types of translational assays was observed. These findings are discussed in terms of the translational defects known to be a characteristic of some of these mutant strains.  相似文献   

5.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   

6.
The present study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle after administration of endotoxin (LPS). Rats implanted with vascular catheters were injected intravenously with a nonlethal dose of Escherichia coli LPS, and samples were collected at 4 and 24 h thereafter; pair-fed control animals were also included. The rate of muscle (gastrocnemius) protein synthesis in vivo was reduced at both time points after LPS administration. LPS did not alter tissue RNA content, but the translational efficiency was consistently reduced at both time points. To identify mechanisms responsible for regulating translation, we examined several eukaryotic initiation factors (eIFs). The content of eIF2alpha or the amount of eIF2alpha in the phosphorylated form did not change in response to LPS. eIF2B activity was decreased in muscle 4 h post-LPS but activity returned to control values by 24 h. A decrease in the relative amount of eIF2Balpha protein was not responsible for the LPS-induced reduction in eIF2B activity. LPS also markedly altered the distribution of eIF4E in muscle. Compared with control values, LPS-treated rats demonstrated 1) a transient increase in binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF4E, 2) a transient decrease in the phosphorylated gamma-form of 4E-BP1, and 3) a sustained decrease in the amount of eIF4G associated with eIF4E. LPS also decreased insulin-like growth factor (IGF) I protein and mRNA expression in muscle at both times. A significant linear relationship existed between muscle IGF-I and the rate of protein synthesis or the amount of eIF4E bound to eIF4G. In summary, these data suggest that LPS impairs muscle protein synthesis, at least in part, by decreasing translational efficiency, resulting from an impairment in translation initiation associated with alterations in both eIF2B activity and eIF4E availability.  相似文献   

7.
Protein Synthesis in Cell-Free Systems: an Effect of Interferon   总被引:6,自引:4,他引:2       下载免费PDF全文
The activity of ribosome and cell-sap fractions from interferon-treated and control chick embryo fibroblasts was compared in mixed chick-mouse and purely chick cell-free systems capable of the synthesis of viral polypeptide(s) in response to viral ribonucleic acid (RNA). Interferon treatment of cells did not affect the intrinsic amino acid incorporation activity of these systems or their response to polyuridylic acid. With encephalomyocarditis (EMC) virus RNA as messenger, however, a fraction of the ribosomes from interferon-treated cells appeared less active than parallel controls. The results obtained with the corresponding cell-sap fractions were variable. Although competition between endogenous and added messengers cannot be excluded in these systems, a reduced level of translation of EMC RNA with interferon-treated cell ribosomes was also suggested by the results of analyses of tryptic digests of the products formed in response to the RNA. In addition, these analyses showed that this reduced activity must reflect a reduction in the rate or frequency of translation rather than a decrease in the length of the EMC RNA translated, for the same polypeptides were synthesized in response to the RNA with material from interferon-treated and control cells. Interferon added directly to the cell-free system was without effect. Although suggestive, these results do not provide definitive evidence for or against the hypothesis that virus protein synthesis is inhibited at the translational level in the interferon-treated cell. Possible alternative interpretations of the data are discussed.  相似文献   

8.
After exposure to O2 intermediates generated by the hypoxanthine-xanthine oxidase system (HX-XO), the rate of [3H]phenylalanine incorporation into total proteins in cultured endothelial cells was markedly reduced. This reduction, which was prevented by catalase, could not be explained by 1) changes in amino acid pools, 2) increased rate of degradation of newly synthesized proteins, 3) impaired poly(A)+ RNA synthesis and efficiency, 4) decreased rate of amino acylation. On the other hand, the increase in the monoribosome-to-polyribosome ratio suggested that translation was affected at the level of chain initiation. Further analysis indicated that 40S initiation complex formation was normal, whereas the assembly of 80S initiation complex was inhibited. Results from reconstitution experiments showed that both normal and treated ribosomes could support normal protein synthesis in the presence of normal initiation factors (IFs). In contrast, IFs from HX-XO lysates did not support normal protein synthesis with ribosomes from either source. Thus, the effect of XO treatment on protein synthesis appears to be an initiation defect related to decreased IF activity and/or availability.  相似文献   

9.
A poliovirus type I (Mahoney strain) mutant was obtained by inserting three base pairs into an infectious cDNA clone. The extra amino acid encoded by the insertion was in the amino-terminal (protein 8) portion of the P2 segment of the polyprotein. The mutant virus makes small plaques on HeLa and monkey kidney (CV-1) cells at all temperatures. It lost the ability to mediate the selective inhibition of host cell translation which ordinarily occurs in the first few hours after infection. As an apparent consequence, the mutant synthesizes far less protein than does wild-type virus. In mutant-infected CV-1 cells enough protein was produced to permit a normal course of RNA replication, but the yield of progeny virus was very low. In mutant-infected HeLa cells there was a premature cessation of both cellular and viral protein synthesis followed by a premature halt of viral RNA synthesis. This nonspecific translational inhibition was distinguishable from wild-type-mediated inhibition and did not appear to be part of an interferon or heat shock response. Because the mutant is recessive, our results imply that (at least in HeLa cells) wild-type poliovirus not only actively inhibits translation of cellular mRNAs, but also avoids early inhibition of its own protein synthesis. Cleavage of the cap-binding complex protein P220, which has been associated with the selective inhibition of capped mRNA translation, did not occur in mutant-infected cells. This result supports the hypothesis that cleavage of P220 plays an important role in normal poliovirus-mediated translational inhibition.  相似文献   

10.
11.
The 3' AU-rich region of human beta-1 interferon (hu-IFN beta) mRNA was found to act as a translational inhibitory element. The translational regulation of this 3' AU-rich sequence and the effect of its association with the poly(A) tail were studied in cell-free rabbit reticulocyte lysate. A poly(A)-rich hu-IFN beta mRNA (110 A residues) served as an inefficient template for protein synthesis. However, translational efficiency was considerably improved when the poly(A) tract was shortened (11 A residues) or when the 3' AU-rich sequence was deleted, indicating that interaction between these two regions was responsible for the reduced translation of the poly(A)-rich hu-IFN beta mRNA. Differences in translational efficiency of the various hu-IFN beta mRNAs correlated well with their polysomal distribution. The poly(A)-rich hu-IFN beta mRNA failed to form large polysomes, while its counterpart bearing a short poly(A) tail was recruited more efficiently into large polysomes. The AU-rich sequence-binding activity was reduced when the RNA probe contained both the 3' AU-rich sequence and long poly(A) tail, supporting a physical association between these two regions. Further evidence for this interaction was achieved by RNase H protection assay. We suggest that the 3' AU-rich sequence may regulate the translation of hu-IFN beta mRNA by interacting with the poly(A) tail.  相似文献   

12.
Rates of accretion of RNA and protein and rates of protein synthesis were measured in sub-confluent cultures of L6 myoblasts. Insulin (100 microU/ml) stimulated protein synthesis by 15% within 30 min and by 40% at two and six hours. By six hours insulin also increased the accretion of RNA (+15%). The cyclo-oxygenase inhibitor indomethacin did not reduce the basal rate of RNA or protein accretion in L6 cells but reduced the rate of protein synthesis by 16%. When added together with insulin, indomethacin inhibited the hormonally-stimulated rate of protein synthesis and also significantly reduced the accretion of RNA. Indomethacin still reduced the effects of insulin on protein synthesis when added to the cells two hours after the hormone. Synthesis of RNA measured by the incorporation of [3H]-uridine was also stimulated by insulin but was inhibited by indomethacin only when the drug was present throughout the incubation. Inhibition of protein synthesis by cyclo-oxygenase inhibitors may be the result of both a direct action on translational efficiency and an effect on RNA synthesis.  相似文献   

13.
Details of the mechanism for ribosome synthesis have been incorporated in the single-cell Escherichia coli model, which enable us to predict the amount of protein synthesizing machinery under different environmental conditions. The predictions agree quite well with available experimental data. The model predicts that ribosomal protein limitations are important when the translational apparatus is in high demand. Ribosomal RNA synthesis is induced by an increase in translational activity, which, in turn, stimulates ribosomal protein synthesis. However, as the demand increases still more, the ribosomal protein mRNA must compete with the plasmid mRNA for ribosomes, and the efficiency of translation of ribosomal proteins is reduced. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Qu F  Morris TJ 《Journal of virology》2000,74(3):1085-1093
The presence of translational control elements and cap structures has not been carefully investigated for members of the Carmovirus genus, a group of small icosahedral plant viruses with positive-sense RNA genomes. In this study, we examined both the 5' and 3' untranslated regions (UTRs) of the turnip crinkle carmovirus (TCV) genomic RNA (4 kb) as well as the 5' UTR of the coat protein subgenomic RNA (1.45 kb) for their roles in translational regulation. All three UTRs enhanced translation of the firefly luciferase reporter gene to different extents. Optimal translational efficiency was achieved when mRNAs contained both 5' and 3' UTRs. The synergistic effect due to the 5'-3' cooperation was at least fourfold greater than the sum of the contributions of the individual UTRs. The observed translational enhancement of TCV mRNAs occurred in a cap-independent manner, a result consistent with the demonstration, using a cap-specific antibody, that the 5' end of the TCV genomic RNA was uncapped. Finally, the translational enhancement activity within the 5' UTR of 1.45-kb subgenomic RNA was shown to be important for the translation of coat protein in protoplasts and for virulent infection in Arabidopsis plants.  相似文献   

15.
16.
We report that the competitive translational activity of alfalfa mosaic virus coat protein mRNA (CP RNA), a nonadenylated mRNA, is determined in part by the 3' untranslated region (UTR). Competitive translation was characterized both in vitro, with cotranslation assays, and in vivo, with microinjected Xenopus laevis oocytes. In wheat germ extracts, coat protein synthesis was constant when a fixed amount of full-length CP RNA was cotranslated with increasing concentrations of competitor globin mRNA. However, translation of CP RNA lacking the 3' UTR decreased significantly under competitive conditions. RNA stabilities were equivalent. In X. laevis oocytes, which are translationally saturated and are an inherently competitive translational environment, full-length CP RNA assembled into large polysomes and coat protein synthesis was readily detectable. Alternatively, CP RNA lacking the 3' UTR sedimented as small polysomes, and little coat protein was detected. Again, RNA stabilities were equivalent. Site-directed mutagenesis was used to localize RNA sequences or structures required for competitive translation. Since the CP RNA 3' UTR has an unusually large number of AUG nucleotide triplets, two AUG-containing sites were altered in full-length RNA prior to oocyte injections. Nucleotide substitutions at the sequence GAUG, 20 nucleotides downstream of the coat protein termination codon, specifically reduced full-length CP RNA translation, while similar substitutions at the next AUG triplet had little effect on translation. The competitive influence of the 3' UTR could be explained by RNA-protein interactions that affect translation initiation or by ribosome reinitiation at downstream AUG codons, which would increase the number of ribosomes committed to coat protein synthesis.  相似文献   

17.
Rates of accretion of RNA and protein and rates of protein synthesis were measured in sub-confluent cultures of L6 myoblasts. Insulin (100 μU/ml) stimulated protein synthesis by 15% within 30 min and by 40% at two and six hours. By six hours insulin also increased the accretion of RNA (+ 15%). The cyclo-oxygenase inhibitor indomethacin did not reduce the basal rate of RNA or protein accretion in L6 cells but reduced the rate of protein synthesis by 16%. When added together with insulin, indomethacin inhibited the hormonally-stimulated rate of protein synthesis and also significantly reduced the accretion of RNA. Indomethacin still reduced the effects of insulin on protein synthesis when added by the incorporation of [3H]-uridine was also stimulated by insulin but was inhibited by indomethacin only when the drug was present throughout the incubation. Inhibition of protein synthesis by cyclo-oxygenase inhibitors may be the result of both a direct action on translational efficiency and an effect on RNA synthesis.  相似文献   

18.
We have prepared homologous, fractionated, cell-free translational systems from uninfected and mengovirus-infected Ehrlich ascites tumor cells in order to determine what alterations occur following virus infection in the translational machinery of the host cell. Two major differences distinguish the system developed from infected cells. First, it has a 40% lower rate of protein synthesis, primarily a consequence of the rate of chain elongation, which is depressed to 60 amino acids/min from 90 amino acids/min in the system from uninfected cells. Second, at supraoptimal concentrations of Mg2+ and K+ the system from virus-infected cells supports the translation of mengovirus RNA but not host mRNA. These differences between the two systems may reflect specific changes which are responsible for the selective translation of mengovirus RNA in the infected cell. In both systems the optimal concentrations of polyamines, monovalent and divalent cations, mRNA, and ribosomal subunits are the same for the translation of either host or viral RNA. This uniformity is useful in experiments, designed to investigate the selective translation of viral RNA, where various components of the two systems are interchanged.  相似文献   

19.
Chondrogenesis, the differentiation of mesenchyme into cartilage, involves a transition from synthesis of type I to type II collagen. Chicken vertebral chondroblasts contain both type II and alpha 2 type I collagen RNAs but synthesize only type II collagen, suggesting the existence of translational discrimination between these RNAs. The experiments outlined in this report examine the translational control mechanism preventing the synthesis of alpha 2(I) collagen in chondroblasts. Specifically, the alpha 2(I) collagen RNA in the cytoplasm of mature chondroblasts does not appear to be sequestered in ribonucleoprotein particles that could prevent its translation in these cells. Instead, the RNA associates with an average of only three ribosomes; each of these ribosomes appears to be capable of forming at least one peptide bond. However, treatment of chondroblasts with low concentrations of cycloheximide, an elongation inhibitor, suggests movement of the ribosomes on the alpha 2(I) collagen RNA may be partially blocked, resulting in a severe reduction in the translation elongation rate. This translational mechanism may constitute an important regulatory function mediating the cessation of type I collagen synthesis during chondrogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号