首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prenatal diagnosis for the lysosomal storage disorders is typically achieved by enzymatic analysis of the relevant lysosomal enzyme in cultured amniocytes or chorionic villi. While prenatal diagnosis of some genetic diseases can be done by analysis of pertinent metabolites in amniotic fluid, there are few data regarding prenatal diagnosis of lysosomal disorders by enzyme analysis of amniotic fluid. Prenatal diagnosis by enzyme analysis of amniotic fluid has the potential advantage of providing a more rapid prenatal test result. In this study we describe an assay for the prenatal diagnosis of the mucopolysaccharidosis beta-glucuronidase deficiency (MPS VII; MIM #253220) using amniotic fluid and we confirm its reliability in detecting an affected fetus in an at-risk pregnancy by enzyme analysis of cultured amniocytes and fetal fibroblasts. Because MPS VII is rare and few instances of prenatal diagnosis for this and nearly all other lysosomal disorders have been accomplished by enzyme analysis of amniotic fluid, confirmation of results obtained from enzyme analysis of amniotic fluid should be carried out by enzyme or mutation analysis using cultured amniocytes or chorionic villus specimens.  相似文献   

2.
Human skin fibroblasts from patients with Type IV glycogen storage disease, in which there is a demonstrable deficiency of glycogen branching enzyme, were shown to be able to synthesize [14C]glycogen containing [14C]glucose at branch points when sonicates containing endogenous glycogen synthase a were incubated with UDP[14C]glucose. The branch point content of the glycogen synthesized by the Type IV cells was essentially the same as that formed by normal cells, but the total synthetic capacity of the Type IV cells was lower. A new assay for the branching enzyme using glycogen synthase as the indicator enzyme has been developed. Using this assay it has been shown that the residual branching enzyme of affected children and of their heterozygote parents is less easily inhibited by an IgG antibody raised in rabbits against the normal human liver enzyme than is the branching enzyme of normal fibroblasts.  相似文献   

3.
4.
Harzer  K.  Schuster  I. 《Human genetics》1989,84(1):83-85
Summary Sixteen pregnancies in families with children enzymatically diagnosed as having Krabbe disease (KD) were monitored for prenatal KD using the assay of galactosyl ceramide -galactosidase (GCG) in uncultured chorionic villi (CV), cultured CV, or cultured amniotic fluid cells (AFC). Prenatal KD diagnoses were made for 5 pregnancies on the basis of lower than 10% normal GCG activity in cultured CV or AFC. Uncultured CV were studied in 3 out of the 5 KD embryos, although the GCG activities of 14%–23% as compared with control villi were diagnostically inconclusive; the relatively high activities were considered to be caused by maternal GCG contamination of these very small villus samples. Although the villi from 6 of the other pregnancies yielded more conclusive results, the use of uncultured CV alone is not recommended for prenatal KD diagnosis, this material being subject to possible uncontrolled contamination with maternal enzyme.  相似文献   

5.
Conditions for assay of beta-mannosidase activity in human chorionic villi were studied using the fluorogenic substrate 4-methylumbelliferyl-beta-D-mannopyranoside. Comparison of the biochemical properties of the chorionic villi beta-mannosidase with those of the enzyme from human cultured fibroblasts showed their similarity. Like the enzyme from skin fibroblasts, the chorionic villi beta-mannosidase had rather high activity. Both enzymes had virtually the same pH optimum (4.2-4.7) and Km value. The data presented suggest that chorion biopsy specimens can be used for prenatal determination of beta-mannosidase activity at the early stage of development.  相似文献   

6.
Classical late-infantile neuronal ceroid lipofuscinosis (LINCL), a progressive and fatal neurodegenerative disease of childhood, results from mutations in a gene (CLN2) that encodes a protein with significant sequence similarity to prokaryotic pepstatin-insensitive acid proteases. We have developed a sensitive protease activity assay that allows biochemical characterization of the CLN2 gene product in various human biological samples, including solid tissues (brain and chorionic villi), blood (buffy coat leukocytes, platelets, granulocytes, and mononuclear cells), and cultured cells (lymphoblasts, fibroblasts, and amniocytes). The enzyme has a pH optimum of 3.5 and is rapidly inactivated at neutral pH. A survey of fibroblasts and lymphoblasts demonstrated that lack of activity was associated with LINCL arising from mutations in the CLN2 gene but not other neuronal ceroid lipofuscinoses (NCLs), including the CLN6 variant LINCL, classical infantile NCL, classical juvenile NCL, and adult NCL (Kufs' disease). A study conducted using blood samples collected from classical LINCL families whose affliction was confirmed by genetic analysis indicates that the assay can distinguish homozygotes, heterozygotes, and normal controls and thus is useful for diagnosis and carrier testing. Analysis of archival specimens indicates that several specimens previously classified as LINCL have enzyme activity and thus disease is unlikely to arise from mutations in CLN2. Conversely, a specimen previously classified as juvenile NCL lacks pepinase activity and is associated with mutations in CLN2. In addition, several animals with NCL-like neurodegenerative symptoms [mutant strains of mice (nclf and mnd), English setter, border collie, and Tibetan terrier dogs, sheep, and cattle] were found to contain enzyme activity and are thus unlikely to represent models for classical LINCL. Subcellular fractionation experiments indicate that the CLN2 protein is located in lysosomes, which is consistent with its acidic pH optimum for activity and the presence of mannose 6-phosphate. Taken together, these findings indicate that LINCL represents a lysosomal storage disorder that is characterized by the absence of a specific protease activity.  相似文献   

7.
The properties of beta-galactocerebrosidase from human chorionic villi, cultured chorionic villi and cultured skin fibroblasts were compared, using 6-hexadecanoylamino-4-methylumbelliferyl-beta-D-galactopyranoside (HMGaL) as substrate. The effects of bile salt and Triton X-100 on beta-galactocerebrosidase were examined. It was shown that optimization of the HMGaL assay system requires the presence of pure sodium taurocholate and Triton X-100 at concentrations of 4.5 mM and 0.28 mM, respectively. The optimal pH value was found to be equal to 4.5-5.0; Km for the substrate was 0.03 mM. A comparison of beta-galactocerebrosidase from chorionic villi and cultured chorionic villi with the enzyme from skin fibroblasts revealed the similarity of some properties of these enzymes. The experimental results suggest that HMGaL can be used as a substrate for the identification of chorionic villi beta-galactocerebrosidase in an early prenatal diagnosis of Krabbe's disease.  相似文献   

8.
Hereditary tyrosinemia is characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2), the last enzyme in the catabolic pathway of tyrosine. FAH was purified from rat and human liver and was used to immunize rabbits. Specific antibodies were used to probe protein extracts of livers and other tissues of normal and tyrosinemic patients. No immunoreactive FAH band was observed on immunoblots of liver, kidneys, and lymphocytes from patients presenting with the acute form of hereditary tyrosinemia. Patients with the chronic form had immunoreactive FAH at a level approximately 20% of normal liver values, which was correlated with the measured enzymatic activity. Immunoblot analysis of aborted fetal tissues revealed normal FAH immunoreactivity in normal liver and kidneys. No FAH immunoreactivity was found in liver and kidneys of tyrosinemic fetuses. The presence of FAH immunoreactivity in normal fetal tissues suggests that deficient FAH activity in tyrosinemia is not simply related to a developmentally regulated expression of the enzyme. By this immunoblot assay, FAH was detected in most human tissues, with maximal immunoreactivity in liver and kidneys and with only trace amounts in chorionic villi and cultured amniocytes. These data confirm that the primary defect in the acute form of hereditary tyrosinemia is an absence of FAH. Moreover, these data suggest that both clinical forms of the disease have a different molecular basis.  相似文献   

9.
Cytogenetic analysis of chorionic villi: a technical assessment   总被引:1,自引:0,他引:1  
Summary Eighty-five samples of chorionic villi from women undergoing prenatal diagnosis at 8 to 12 weeks' gestation were subjected to cytogenetic analysis. Samples were prepared by a direct technique that permits limited analysis within two hours and by a short-term culture technique that permits detailed structural analysis within one week. An adequate number of cell divisions for cytogenetic analysis was obtained from 96% of living fetuses. Using both the direct technique and short-term culture, satisfactory banded chromosomal preparations were made in 93% of cases. Eleven of 12 pregnancies (92%) shown by ultrasound to be dead shortly before sampling, had cytogenetic abnormalities. Further studies are needed to develop banding definition equivalent to that available on cultured amniocytes.  相似文献   

10.
Type III glycogen storage disease is caused by a deficiency of glycogen debranching-enzyme activity. Many patients with this disease have both liver and muscle involvement, whereas others have only liver involvement without clinical or laboratory evidence of myopathy. To improve our understanding of the molecular basis of the disease, debranching enzyme was purified 238-fold from porcine skeletal muscle. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified enzyme gave a single band with a relative molecular weight of 160,000 that migrated to the same position as purified rabbit-muscle debranching enzyme. Antiserum against porcine debranching enzyme was prepared in rabbit. The antiserum reacted against porcine debranching enzyme with a single precipitin line and demonstrated a reaction having complete identity to those of both the enzyme present in crude muscle and the enzyme present in liver extracts. Incubation of antiserum with purified porcine debranching enzyme inhibited almost all enzyme activity, whereas such treatment with preimmune serum had little effect. The antiserum also inhibited debranching-enzyme activity in crude liver extracts from both pigs and humans to the same extent as was observed in muscle. Immunoblot analysis probed with anti-porcine-muscle debranching-enzyme antiserum showed that the antiserum can detect debranching enzyme in both human muscle and human liver. The bands detected in human samples by the antiserum were the same size as the one detected in porcine muscle. Five patients with Type III and six patients with other types of glycogen storage disease were subjected to immunoblot analysis. Although anti-porcine antiserum detected specific bands in all liver and muscle samples from patients with other types of glycogen storage disease (Types I, II, and IX), the antiserum detected no cross-reactive material in any of the liver or muscle samples from patients with Type III glycogen storage disease. These data indicate (1) immunochemical similarity of debranching enzyme in liver and muscle and (2) that deficiency of debranching-enzyme activity in Type III glycogen storage disease is due to absence of debrancher protein in the patients that we studied.  相似文献   

11.
Summary The close genetic linkage between the gene for congenital adrenal hyperplasia due to 21-hydroxylase (21-OH) deficiency and HLA genes allowed us to use the polymorphism of this system as a marker of the disease. HLA genotyping can be performed by using restriction enzyme fragments hybridized with specific probes instead of serologic methods. In seven pregnancies at risk for 21-OH deficiency, a first trimester prenatal diagnosis has been performed by determining the fetal genotype by linkage analysis of DNA from chorionic villi using HLA class I and class II probes. In four of these pregnancies, determination of 17-OH progesterone in first trimester amniotic fluid afforded a complementary approach to the diagnosis.  相似文献   

12.
Assignment of the human glycogen debrancher gene to chromosome 1p21   总被引:3,自引:0,他引:3  
Glycogen debranching enzyme is a monomeric protein containing two independent catalytic activities of glycantransferase and glucosidase that are both required for glycogen degradation. Its deficiency causes type III glycogen storage disease. A majority of the patients with this disease have deficient enzyme activity in both liver and muscle (type IIIa) but approximately 15% of them lack enzyme activity only in the liver (type IIIb); however, the enzyme is a monomer and appears to be identical in all the tissues. The cDNA coding for the complete human muscle debranching enzyme has recently been isolated. Using the cDNA clones, the debrancher gene was localized to human chromosome 1 by somatic cell hybrid analysis. Regional assignment to chromosome band 1p21 was determined by in situ hybridization. Mapping of the debrancher gene to a single chromosome site is consistent with our hypotheses that a single gene encodes both liver and muscle debrancher protein.  相似文献   

13.
Glycogen storage disease type IV (GSD-IV), also known as Andersen disease or amylopectinosis (MIM 23250), is a rare autosomal recessive disorder caused by a deficiency of glycogen branching enzyme (GBE) leading to the accumulation of amylopectin-like structures in affected tissues. The disease is extremely heterogeneous in terms of tissue involvement, age of onset and clinical manifestations. The human GBE cDNA is approximately 3-kb in length and encodes a 702-amino acid protein. The GBE amino acid sequence shows a high degree of conservation throughout species. The human GBE gene is located on chromosome 3p14 and consists of 16 exons spanning at least 118 kb of chromosomal DNA. Clinically the classic Andersen disease is a rapidly progressive disorder leading to terminal liver failure unless liver transplantation is performed. Several mutations have been reported in the GBE gene in patients with classic phenotype. Mutations in the GBE gene have also been identified in patients with the milder non-progressive hepatic form of the disease. Several other variants of GSD-IV have been reported: a variant with multi-system involvement including skeletal and cardiac muscle, nerve and liver; a juvenile polysaccharidosis with multi-system involvement but normal GBE activity; and the fatal neonatal neuromuscular form associated with a splice site mutation in the GBE gene. Other presentations include cardiomyopathy, arthrogryposis and even hydrops fetalis. Polyglucosan body disease, characterized by widespread upper and lower motor neuron lesions, can present with or without GBE deficiency indicating that different biochemical defects could result in an identical phenotype. It is evident that this disease exists in multiple forms with enzymatic and molecular heterogeneity unparalleled in the other types of glycogen storage diseases.  相似文献   

14.
Comparative biochemical and histopathological evidence suggests that a deficiency in the glycogen branching enzyme, encoded by the GBE1 gene, is responsible for a recently identified recessive fatal fetal and neonatal glycogen storage disease (GSD) in American Quarter Horses termed GSD IV. We have now derived the complete GBE1 cDNA sequences for control horses and affected foals, and identified a C to A substitution at base 102 that results in a tyrosine (Y) to stop (X) mutation in codon 34 of exon 1. All 11 affected foals were homozygous for the X34 allele, their 11 available dams and sires were heterozygous, and all 16 control horses were homozygous for the Y34 allele. The previous findings of poorly branched glycogen, abnormal polysaccharide accumulation, lack of measurable GBE1 enzyme activity and immunodetectable GBE1 protein, coupled with the present observation of abundant GBE1 mRNA in affected foals, are all consistent with the nonsense mutation in the 699 amino acid GBE1 protein. The affected foal pedigrees have a common ancestor and contain prolific stallions that are likely carriers of the recessive X34 allele. Defining the molecular basis of equine GSD IV will allow for accurate DNA testing and the ability to prevent occurrence of this devastating disease affecting American Quarter Horses and related breeds.The nucleotide sequence data reported in this article have been submitted to GenBank and have been assigned the accession numbers AY505107–AY505110.  相似文献   

15.
Prenatal diagnosis of a true fetal tetraploidy in direct and cultured chorionic villi: Tetraploidy is characterized by four complete sets of chromosomes (4n= 92). Although it has been frequently reported in spontaneous abortions, tetraploidy is extremely rare in term pregnancy. Most of late surviving patients are diploid/tetraploid mosaics and present severe mental and physical impairment. Up to date, only five tetraploidies were ascertained in the prenatal stage in amniocytes and/or fetal blood lymphocytes. No one has been reported in chorionic villi probably because tetraploidy is generally considered in this tissue as a false positive result due to confined placental mosaicism (CPM) or placental culture artefacts. We report here on a case of tetraploidy detected in chorionic villi because of fetal cystic hygroma. We discuss the reliability of this diagnosis and propose guidelines in the follow-up of tetraploidies detected after chorionic villus sampling (CVS). Thus a misdiagnosis of this poor condition will be avoided at best and an appropriate genetic counseling will be given to the parents.  相似文献   

16.
Lysyl oxidase activity was measured in the lungs and from cultured fibroblasts of Blotchy mice. A marked decrease in lysyl oxidase activity was observed in lungs of affected mice as compared to normal litter mates. Fibroblasts cultured from Blotchy mice were also deficient in lysyl oxidase, producing less than half of normal enzyme levels. Normal and Blotchy fibroblasts which had been maintained in culture for several months and had undergone spontaneous transformation, continued to show the same magnitude of difference in lysyl oxidase levels. The data suggest that the deficiency of lysyl oxidase is inherent in Blotchy fibroblasts and support the idea that the deficiency of this enzyme is the metabolic lesion that leads to the connective tissue defects observed in these animals.  相似文献   

17.
Summary Galactosyl ceramide -galactosidase activity was determined in chorionic villi (CV) samples obtained between the 9th and 11th weeks of gestation from 5 women with pregnancies at risk for Krabbe's disease (globoid-cell leukodystrophy, KD). These enzyme activities were compared with those in controls, as well as with those in cultured amniotic fluid cells (AFC) from one of the five at-risk pregnancies and from 29 KD-risk pregnancies studied previously. The results of these CV enzyme analyses were such that one case of fetal KD was clearly diagnosable, one fetal genotype heterozygous for KD was presumed, and three normal fetal genotypes were suggested. The use of both uncultured and cultered CV can be recommended for prenatal KD testing, but AFC may continue to play an important role, too. Of the 58 prenatal KD tests we have evaluated since 1974, a positive diagnosis of Krabbe's disease was made (and confirmed after termination of pregnancy when feasible) in 23 which is significantly more than 25% of 58.This paper is dedicated to Professor Jürgen Peiffer (Director, Institut für Hirnforschung, University of Tübingen) on the occasion of his 65th birthday  相似文献   

18.
Pompe disease (glycogen storage disease type II) is a glycogen storage disease caused by a deficiency of the lysosomal enzyme, acid maltase/acid alpha-1,4 glucosidase (GAA). Deficiency of the enzyme leads primarily to intra-lysosomal glycogen accumulation, primarily in cardiac and skeletal muscles, due to the inability of converting glycogen into glucose. Enzyme replacement therapy (ERT) has been applied to replace the deficient enzyme and to restore the lost function. However, enhancing the enzyme activity to the muscle following ERT is relatively insufficient. In order to enhance GAA activity into the muscle in Pompe disease, efficacy of hyaluronidase (hyase) was examined in the heart, quadriceps, diaphragm, kidney, and brain of mouse model of Pompe disease. Administration of hyase 3000 U/mouse (intravenous) i.v. or i.p. (intraperitoneal) and 10 min later recombinant human GAA (rhGAA) 20 mg/kg i.v. showed more GAA activity in hyase i.p. injected mice compared to those mice injected with hyase via i.v. Injection of low dose of hyase (3000 U/mouse) or high dose of hyase (10,000 U/mouse) i.p. and 20 min or 60 min later 20 mg/kg rhGAA i.v. increased GAA activity into the heart, diaphragm, kidney, and quadriceps compared to hyase untreated mice. These studies suggest that hyase enhances penetration of enzyme into the tissues including muscle during ERT and therefore hyase pretreatment may be important in treating Pompe disease.  相似文献   

19.
We investigated the possibility of mucolipidosis type II (ML II) prenatal diagnosis by lysosomal enzyme determination on trophoblast biopsy obtained at 10 weeks of gestation in two pregnancies at risk. Diagnosis of ML II was made in both cases on fresh chorionic villi on the basis of depressed beta-galactosidase activity, and after abortion, the diagnosis was confirmed on fresh fetal tissues and on cells cultured from trophoblast and fetuses. We stress the importance of culturing cells from the trophoblast biopsy to ensure a reliable diagnosis.  相似文献   

20.
The lysosomal enzyme responsible for cholesteryl ester hydrolysis, acid cholesteryl ester hydrolase, or acid lipase (E.C.3.1.1.13) plays an important role in cellular cholesterol metabolism. Loss of the activity of this enzyme in tissues of individuals with both Wolman disease and cholesteryl ester storage disease is believed to play a causal role in these conditions. The objectives of our studies were not only to directly compare and contrast the clinical features of Wolman disease and cholesteryl ester storage disease but also to determine the reasons(s) for the varied phenotype expression of acid cholesteryl ester hydrolase deficiency. Although both diseases manifest a type II hyperlipoproteinemic phenotype and hepatomegaly secondary to lipid accumulation, a more malignant clinical course with more significant hepatic and adrenal manifestations was observed in the patient with Wolman disease. However, the acid cholesteryl ester hydrolase activity in cultured fibroblasts in both diseases was virtually absent. In addition, fibroblasts from both Wolman disease and cholesteryl ester storage disease were able to utilize exogenously supplied enzyme, suggesting that neither disease was due to defective enzyme delivery by the mannose-6-phosphate receptor pathway. Coculture and cell fusion of fibroblasts from Wolman disease and cholesteryl ester storage disease subjects did not lead to correction of the enzyme deficiency, indicating that these disorders are allelic. However, the activities of the hepatic acid and neutral lipase in these two clinical variants were quite different. Hepatic acid lipase activity was only 4% normal in Wolman disease, but the activity was 23% normal in cholesteryl ester storage disease. The hepatic neutral lipase activity was normal in Wolman disease but increased more than twofold in cholesteryl ester storage disease. These combined results indicate that the clinical heterogeneity in acid cholesteryl ester hydrolase deficiency can be explained by a varied hepatic metabolic response to an allelic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号