首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Cationic potential-sensitive dyes have previously been used to selectively stain mitochondria in living animal cells (Johnson, Walsh & Chen, 1980; Johnson et al., 1981). The present work demonstrates that the cyanine dye 3,3′-dihexyloxacarbocyanine iodide (DiOC6(3)) can also be used as a mitochondrial stain in living plant cells. The stained mitochondria were easily visualized by fluorescence microscopy. The accumulation of DiOC6(3) in mitochondria seemed to be potential-dependent since it was prevented by protonophores, valinomycin and inhibitors of electron transport. It was often observed that DiOC6(3) also stained the nuclear membrane of some cells. This fluorescence, limited to the perinuclear region, was possibly due to a potential across one or both nuclear membranes, although it was not completely dissipated by any of the ionophores or inhibitors tested. Our observations demonstrate the usefulness of using DiOC6(3) for studying relative membrane potentials of plant mitochondria and, perhaps, other organelles and membrane systems in living plant cells.  相似文献   

2.
The nuclear envelope of eukaryotic cells provides a barrier separating nucleus from cytoplasm, thereby regulating the exchange of macromolecules between both compartments. However, in cells exposed to severe forms of stress this barrier may break down, resulting in the mixing of nuclear and cytoplasmic contents. We show here that the fusion protein GFP-beta-galactosidase can be used to evaluate the intactness of nuclear envelopes in HeLa cells that have been exposed to heat and oxidative stress. GFP-beta-galactosidase is restricted to the cytoplasm of interphase cells, but enters the nucleus when nuclear membranes are disrupted. For comparison, we have analyzed the barrier function of nuclear membranes with antibodies against lamin B. Treatment of fixed cells with digitonin permeabilizes the plasma membrane, but leaves nuclear envelopes intact. Consequently, after digitonin incubation antibodies to lamin B can bind their antigen only if nuclear membranes are damaged. For various heat and oxidative stress conditions, we have compared the distribution of GFP-beta-galactosidase with the accessibility of lamin B to antibodies. Our results demonstrate that nuclear envelopes are permeable to antibodies whenever GFP-beta-galactosidase enters the nucleus. GFP-beta-galactosidase is therefore a useful tool for evaluating the disintegration of the nuclear envelope and identifying cells in which a mixing of nuclear and cytoplasmic material takes place.  相似文献   

3.
4.
We report a distinct microenvironment within the nuclear envelope (NE) in living cells revealed by a spectral shift of the fluorescent dye FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl)-pyridinium 2Br). The dye readily translocated to the NE at physiological temperature where it exhibited enhanced fluorescence when excited at 620-650 nm in contrast to 480-520 nm excitation in the endocytic pathway and in the endoplasmic reticulum (ER). In vitro data indicated that the dye reveals an enrichment of negatively charged lipids, presumably due to local phospholipid synthesis. Dual-excitation imaging of FM4-64 in relation to lamina-associated polypeptide-1-green fluorescent protein during mitosis suggested that the disassembly of NE preserves microscale lipid complexes in the ER. Convolutions of NE in cancer or primary cells were readily visualized, and killing of tumor cells by T cells was marked by sudden loss of the long-wavelength excited fluorescence in the NE coincident with apoptosis. This report of FM4-64 as the first vital dye sensitive to the NE environment opens new ways for real-time visualization and functional studies of the NE.  相似文献   

5.
Summary The Na-dependent transport of a number of organic molecules (d-glucose,l-proline,l-alanine,l-phenylalanine) in brush-border membrane vesicles isolated from the intestine of the eel (Anguilla anguilla) was monitored by recording the fluorescence quenching of the voltage-sensitive cyanine dye 3,3-diethylthiacarbocyanine iodide (DiS-C2(5)). The experimental approach consisted of: a) generating an inside-negative membrane potential mimicking in vivo conditions: b) measuring the rate of membrane potential decay (i.e., the rate of fluorescence quenching decay) due to Na-neutral substrate cotransport. Rates of membrane potential decay showed saturation on substrate concentration andK app values (the substrate concentration giving 50% of the maximal rate) were estimated for Na-dependent transport ofd-glucose (0,099mm),l-alanine (0.516mm),l-proline (0.118mm) andl-phenylalanine (2.04mm). The influence of an inside-negative membrane potential on the affinity of the transporter for glucose and for sodium is discussed.  相似文献   

6.
Complexation between the primary carrier of ligands in blood plasma, human serum transferrin (Tf), and a cyanine dye, 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐phenyl‐thiacarbocyanine‐triethylam monium salt (PTC) was investigated using fluorescence spectra, UV/Vis absorption spectra, synchronous fluorescence spectra, circular dichroism (CD) and molecular dynamic docking. The experimental results demonstrate that the formation of PTC–Tf complex is stabilized by van der Waal's interactions and hydrogen bonds, and the binding constants were found to be 8.55 × 106, 8.19 × 106 and 1.75 × 104 M?1. Moreover, fluorescence experiments prove that the operational mechanism for the fluorescence quenching is static quenching and non‐radiative energy transfer. Structural investigation of the PTC–Tf complexes via synchronous fluorescence spectra and CD showed that the structure of Tf became more stable with a major increase in the α‐helix content and increased polarity around the tryptophan residues after PTC binding. In addition, molecular modeling highlights the residues located in the N‐lobe, which retain high affinity for PTC. The mode of action of the PTC–Tf complex is illustrated by these results, and may provide an effective pathway for the transport and targeted delivery of antitumor agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In routine practice, nuclear pleomorphism of tumours is assessed by haematoxylin staining of the membrane-bound heterochromatin. However, decoration of the nuclear envelope (NE) through the immunofluorescence staining of NE proteins such as lamin B and emerin can provide a more objective appreciation of the nuclear shape. In breast cancer, nuclear pleomorphism is one of the least reproducible parameters to score histological grade, thus we sought to use NE proteins to improve the reproducibility of nuclear grading. First, immuno-fluorescence staining of NE as well as confocal microscopy and three-dimensional reconstruction of nuclei in cultured cells showed a smooth and uniform NE of normal breast epithelium in contrast to an irregular foldings of the membrane and the presence of deep invaginations leading to the formation of an intranuclear scaffold of NE-bound tubules in breast cancer cells. Following the above methods and criteria, we recorded the degree of NE pleomorphism (NEP) in a series of 273 invasive breast cancers tested by immunofluorescence. A uniform nuclear shape with few irregularities (low NEP) was observed in 135 cases or, alternatively, marked folds of the NE and an intranuclear tubular scaffold (high NEP cases) were observed in 138 cases. The latter features were significantly correlated (P-value <0.002) with lymph node metastases in 54 histological grade 1 and in 173 cancers with low mitotic count. Decoration of the NE might thus be regarded as a novel diagnostic parameter to define the grade of malignancy, which parallels and enhances that provided by routine histological procedures.  相似文献   

8.
Calcium is recognized as an important intracellular messenger with a pivotal role in the regulation of many cytosolic and nuclear processes. Gangliosides of various types, especially GM1, are known to have a role in some aspects of Ca2+ regulation, operating through a variety of mechanisms that are gradually coming to light. The present study provides evidence for a sodium-calcium exchanger in the nuclear envelope of NG108-15 neuroblastoma cells that is potently and specifically activated by GM1. Immunoblot analysis revealed an unusually tight association of GM1 with the exchanger in the nuclear envelope but not with that in the plasma membrane. Exchanger and associated GM1 were located in the inner membrane of the nuclear envelope, suggesting this system could function to transfer Ca2+ between nucleoplasm and the envelope lumen. The GM1-enhanced exchange was blocked by cholera toxin B subunit while C2-ceramide, a recently discovered inhibitor of the exchanger, blocked all transfer. Exchanger activity was significantly elevated in nuclei isolated from cells that were induced to differentiate by KCl + dibutyryl-cAMP, a treatment previously shown to promote up-regulation of nuclear GM1 in conjunction with axonogenesis. Similar enhancement was achieved by addition of exogenous GM1 to nuclei from undifferentiated cells. These results suggest a prominent role for nuclear GM1 in regulation of nuclear Ca2+ homeostasis.  相似文献   

9.
Previous reports indicated the presence of both gangliosides and sialidase in the nuclear envelope (NE) of primary neurons and the NG108-15 neural cell line. GM1, one of the major gangliosides of this membrane, was shown to be tightly associated with a sodium-calcium exchanger in the inner membrane of the NE and to potentiate exchanger activity. GD1a was the other major ganglioside detected in the NE and, like GM1, occurs in both inner and outer membranes. A subsequent report indicated the presence of sialidase activity in the NE without specification as to which of the two membranes express it. The present study was undertaken to determine the nature and locus of this activity within the NE of two cell lines: NG108-15 and SH-SY5Y. Western blot analysis of the separated membranes revealed occurrence of Neu3 in the inner membrane and Neu1 in the outer membrane of the NE. Moreover, sialidase activity at both sites was shown capable of catalyzing conversion of endogenous GD1a to GM1.  相似文献   

10.
The unicellular Tetrahymena possess hormone receptors in the nuclear envelope similarly to higher rank animals. These receptors bind insulin and their specificity is detectable by monoclonal antibodies developed to insulin. The hormonal (insulin) pretreatment (imprinting) of the cell did not alter the binding capacity of the nuclear membrane, demonstrated by antibody-technique. The specific binding characteristics of the plasma membrane was demonstrated and this was significantly increased following imprinting. In the nucleus of Tetrahymena presence of insulin was not detected by immunocytochemical method.  相似文献   

11.
The aim of this work was to develop a quick method for analysis of macromolecules of the extracellular matrix. Of great interest are soluble components of the extracellular matrix, in particular, carrier proteins, whose variation dynamics can characterize the studied tissue in its development, adult stage, and aging. We suggest the method of analysis of the extracellular matrix to reveal the presence of albumin and collagen by using an anionic cyanine dye as a spectral and fluorescence probe. The method was applied for the analysis of the human vitreous body in the course of its development. Albumin was detected by the appearance of the trans monomer absorption and fluorescence bands in the dye spectra, and collagen was detected by the absorption and fluorescence bands of J aggregates. Hyaluronic acid present in the vitreous body does not interfere with the results of the analysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis confirmed the presence of albumin in the vitreous body. We suppose that albumin as a protein carrying biologically active macromolecules plays an important role in the processes of differentiation and functional establishment of ocular tissues in the course of their prenatal development.  相似文献   

12.
Autosomal dominantly inherited missense mutations in lamins A and C cause familial partial lipodystrophy of the Dunnigan-type (FPLD), and myopathies including Emery-Dreifuss muscular dystrophy (EDMD). While mutations responsible for FPLD are restricted to the carboxyl-terminal tails, those responsible for EDMD are spread throughout the molecules. We observed here the same structural abnormalities in the nuclear envelope and chromatin of fibroblasts from patients with FPLD and EDMD, harboring missense mutations at codons 482 and 453, respectively. Similar nuclear alterations were generated in fibroblasts, myoblasts, and preadipocytes mouse cell lines overexpressing lamin A harboring either of these two mutations. A large variation in sensitivity to lamin A overexpression was observed among the three cell lines, which was correlated with their variable endogenous content in A-type lamins and emerin. The occurrence of nuclear abnormalities was reduced when lamin B1 was coexpressed with mutant lamin A, emphasizing the functional interaction of the two types of lamins. Transfected cells therefore develop similar phenotypes when expressing lamins mutated in the carboxyl-terminal tail at sites responsible for FPLD or EDMD.  相似文献   

13.
We previously performed a gene-trap screen in mouse cells with particular focus on clones in which the trapped protein-reporter fusions localise to compartments of the nucleus. Here we describe one such gene-trap line in which the fusion protein showed a unique, patchy distribution at the nuclear periphery. We have cloned the endogenous mouse and human cDNAs encoding the protein trapped in the F9/3D3 cell line. The predicted proteins (64 kDa) encoded by this novel gene are highly conserved and similar to an unpublished rat protein in sequence databases called p80 or lyric. The amino acid sequence of 3D3/lyric indicates that it may be a type-1b membrane protein with a single transmembrane domain (TMD). Antibodies against the endogenous protein recognise multiple isoforms, consistent with multiple 3D3/lyric mRNAs detected by Northern blot analysis. Subcellular fractionation and immunostaining show that 3D3/lyric is located not only principally in the endoplasmic reticulum (ER), but also in the nuclear envelope (NE), which is contiguous with this compartment. Furthermore, 3D3/lyric is also found in the nucleolus and is therefore a rare example of a protein that suggests a possible connection between this compartment and the endoplasmic reticulum.  相似文献   

14.
15.
Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled‐coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross‐react with anti‐intermediate filament and anti‐lamin antibodies, form filaments 6–12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin‐like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin‐like proteins by co‐immunoprecipitation and co‐localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin‐like proteins. Its similarities with some of the proteins described as onion lamin‐like proteins suggest that they are highly related or perhaps the same proteins.  相似文献   

16.
To clarify the molecular mechanisms of neural development in vertebrates, we analyzed a novel gene, termed nemp1 (nuclear envelope integral membrane protein 1), which is expressed in the Xenopus anterior neuroectoderm at the neurula stage. Nemp1 has a putative signal peptide and five transmembrane domains, but does not have any other known domains. We show that Nemp1 is localized to the inner nuclear membrane (INM) with its evolutionarily conserved C-terminal region facing the nucleoplasm. Both overexpression and knockdown of Nemp1 in Xenopus embryos reduced the expression of early eye marker genes, rax, tbx3, and pax6, and later resulted mainly in severe eye defects at the tailbud stage. In contrast, the expression of a forebrain/midbrain marker, otx2, and a pan-neural marker, sox2, was largely unaffected. Deletion analysis of Nemp1 showed that nuclear envelope-localization of the C-terminal region is necessary for its eye-reducing activity. Furthermore, nemp1 is coexpressed with baf (barrier-to-autointegration factor) in the eye anlagen, and that Nemp1 interacts with BAF through the BAF-binding site in the C-terminal region and this site is required for Nemp1 activity. These data suggest that Nemp1 is involved in the expression of eye marker genes by functioning at the INM at least partly through BAF.  相似文献   

17.
18.
Proliferating cell nuclear antigen (PCNA) is known as a DNA sliding clamp that acts as a platform for the assembly of enzymes involved in DNA replication and repair. Previously, it was reported that a crenarchaeal PCNA formed a heterotrimeric structure, and that each PCNA subunit has distinct binding specificity to PCNA-binding proteins. Here we describe the PCNA-binding properties of a DNA ligase from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. Based on our findings on the Pyrococcus furiosus DNA ligase–PCNA interaction, we predicted that the aromatic residue, Phe132, in the DNA-binding domain of A. pernix DNA ligase (ApeLig) would play a critical role in binding to A. pernix PCNA (ApePCNA). Surface plasmon resonance analyses revealed that the ApeLig F132A mutant does not interact with an immobilized subunit of ApePCNA. Furthermore, we could not detect any stimulation of the ligation activity of the ApeLig F132A protein by ApePCNA in vitro. These results indicated that the phenylalanine, which is located in our predicted PCNA-binding region in ApeLig, has a critical role for the physical and functional interaction with ApePCNA.  相似文献   

19.
The crystal structures of vitamin D nuclear receptor (VDR) have revealed that all compounds are anchored by the same residues to the ligand binding pocket (LBP). Based on this observation, a synthetic analog with a locked side chain (21-nor-calcitriol-20(22),23-diyne) has been synthesized in order to gain in entropy energy with a predefined active side chain conformation. The crystal structure of VDR LBD bound to this locked side chain analogue while confirming the docking provides a structural basis for the activity of this compound.  相似文献   

20.
RanGTPases are highly conserved in eukaryotes from yeast to human and have been implicated in many aspects of nuclear structure and function. In our previous study, it was revealed that the RanGTPase was up-regulated in large yellow croaker challenged by pathogen. However, the mechanism of RanGTPase in immunity remains unclear. In this investigation, on the basis of protein interaction, it was found that RanGTPase interacted with myosin light chain (designated as LycMLC), a crucial protein in the process of phagocytosis. Furthermore, it was found and characterized in this marine fish for the first time. The full-length cDNA of LycMLC was 771 bp, including a 5′-terminal untranslated region (UTR) of 36 bp, 3′-terminal UTR of 279 bp and an open reading frame (ORF) of 456 bp encoding a polypeptide of 151 amino acids. RT-PCR analysis indicated that LycMLC gene was constitutively expressed in the 9 tissues examined, including kidney, liver, gill, muscle, spleen, skin, heart, intestine and blood. The result of quantitative real-time PCR analysis revealed the highest expression in muscle and the weakest expression in skin. Time course analysis showed that LycMLC expression was obviously up-regulated in blood after immunization with either poly I:C or formalin-inactive Gram-negative bacteria Vibrio parahaemolyticus. It indicated that the highest expression was 4.5 times (at 24 h) as much as that in the control (P < 0.05) challenged by poly I:C and 5.0 times (at 24 h) challenged by bacteria. These results suggested that LycMLC might play an important role in large yellow croaker defense against the pathogen infection. Therefore our study revealed a novel pathway concerning immunity of RanGTPase by the direct interaction with the cytoskeleton protein, which would help to better understand the molecular events in immune response against pathogen infection in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号