首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roles of cell-to-cell communication in development   总被引:3,自引:0,他引:3  
Possible roles of cell-to-cell communication mediated by intercellular bridges and gap junctions in development of the female gamete and embryo are discussed. Synchronization of cell cycle events is presumably a role for intercellular bridges between germ cells. The follicle of the Cecropia moth reveals that an electrical polarity exists between nurse cells and oocytes which are connected by intercellular bridges and this polarity may generate differences that result in differentiation of the oogonia to become either the oocyte or nurse cells. Gap junction-mediated transfer of cyclic AMP, made in response to gonadotropin stimulation, between granulosa cells is discussed as a mechanism that allows cells within a tissue to respond to an external stimulus even though all cells in that tissue may not be exposed to the stimulus. A nutritional role for heterologous cell communication between follicle cells and the oocyte in oocyte growth is presented as an example of how gap junction-mediated communication can allow one cell type to influence the behavior of another cell type. During development, a restriction in communication between differentiating cells is frequently observed. Examples of this phenomenon in a mammal and an insect are presented.  相似文献   

2.
Spermatogenesis is a stepwise cellular differentiation process involving proliferation and commitment to differentiate in spermatogonia, meiosis in spermatocytes, and morphological changes in round spermatids. The whole process is regulated by intercellular communication between the germ cells and the supporting cells. In order to investigate whether neurotrophin family and their receptors contribute to the intercellular communication, we examined the expression of neurotrophins and their receptors in testis during spermatogenesis. One of neurotrophin family, NT-3 was expressed in spermatocytes and spermatogonia while its high affinity receptor, TrkC was found mainly in late spermatids and their low affinity receptor, TrkA in spermatocytes and round spermatids. On the other hand, BDNF immunoreactivity was found in Sertoli cells while its high affinity receptor, TrkB was found in spermatogonia. The temporally and spatially regulated expression of neurotrophins, NT-3 and BDNF, and their receptors, TrkC and TrkB, during male germ cell development suggests that neurotrophins play as the paracrine factors in the intercellular communication between the germ cells and the supporting somatic cells to control germ cell development.  相似文献   

3.
The skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) is a potent inhibitor of gap junctional intercellular communication. In the present study, the inhibition of cell-cell communication by TPA has been investigated in primary bone cells from newborn rat calvaria, with an emphasis on the involvement of intracellular pH (pH(i)) and cytosolic calcium ([Ca(+2)](i)) in this process. The results show that TPA (5 x 10(-)(8) M) caused a complete inhibition of intercellular communication within 40-60 min. The intercellular communication was fully restored after overnight incubation in the presence of TPA. This effect was found to be associated with an elevation of pH(i). However, neither an increase of pH(i) alone nor exposure to TPA, under conditions preventing pH(i)-shift, were found to affect intercellular communication. It is suggested that the inhibition of intercellular communication, in the presence of TPA, depends on the pH(i)-shift itself rather than on the absolute value of pH(i). In addition, elevation of cytosolic calcium by ionomycin led to the termination of intercellular communication after 30 min. This inhibitory effect was abolished when the cells were incubated for overnight with TPA and then intracellular calcium was elevated by the addition of ionomycin. These results indicate that shift of pH(i) and the increase of intracellular calcium are involved in repression of intercellular communication by TPA.  相似文献   

4.
Normal rat kidney (NRK) cells cultured in the presence of epidermal growth factor are contact-inhibited at confluent densities. In the additional presence of transforming growth factor (TGF)-beta, however, cells undergo phenotypic transformation which is accompanied by a loss of contact inhibition. In this study, we show by means of the fluorescence photobleaching recovery technique and a scrape-loading dye transfer technique that quiescent confluent cultures of NRK cells do not show extensive gap junction-mediated intercellular communication. Cells contact-inhibited in the presence of epidermal growth factor also show only limited intercellular communication, although with an enhanced permeability coefficient. Cells phenotypically transformed upon addition of TGF beta, however, show extensive intercellular communication, with a similarly enhanced permeability coefficient. This enhanced intercellular communication induced by TGF beta is paralleled by an increase in intracellular pH. It is concluded that in contrast to what has been observed during tumorigenic transformation, phenotypic transformation of NRK cells induced by TGF beta results in an enhancement of the extent of gap junction-mediated intercellular communication.  相似文献   

5.
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43.  相似文献   

6.
间隙连接广泛分布于各种组织细胞中,由其构成的通道允许小分子信号物质在相邻细胞间直接传递,在细胞间的通讯方面起着非常重要的作用。间隙连接由连接蛋白(Cx)组成,目前已经发现Cx家族有20多个成员[1],它们在相邻细胞间组成同种或异种间隙连接,调控着细胞的增殖和分化。在哺乳动物卵泡发育过程中,卵母细胞与周围的颗粒细胞之间形成的缝隙连接,介导胞间通讯,对生殖细胞迁移、卵母细胞减数分裂能力恢复、颗粒细胞分层、卵泡成腔、黄体形成、促性腺激素信号传递有非常重要的调节作用。本文根据近年来相关的研究报道,对卵泡发育过程中间隙连接的作用进行综述。  相似文献   

7.
The elaboration of pattern within insect segments is a well-studied example of cellular patterning during development. This process requires that each cell develop appropriately for its position. Experimental embryology suggests that intercellular communication plays a key role in imparting positional information to cells. Drosophila genetics has identified numerous genes whose activity is required for patterning within segments, and whose molecular genetic analyses suggest they constitute and control cell communication circuits. Particular genes are expressed or required by cells that will follow distinct developmental pathways, and some appear to confer or interpret intercellular signals. Other patterning genes are ubiquitously required and may provide the machinery through which the signals are transmitted.  相似文献   

8.
We detected cell-to-cell communication via intercellular bridges in DU 145 human prostate cancer cells by fluorescence microscopy. Since DU 145 cells have deficient gap junctions, intercellular bridges may have a prominent role in the transfer of chemical signals between these cells. In culture, DU 145 cells are contiguous over several cell diameters through filopodial extensions, and directly communicate with adjacent cells across intercellular bridges. These structures range from 100 nm to 5 microm in diameter, and from a few microns to at least 50-100 microm in length. Time-lapse imagery revealed that (1) filopodia rapidly move at a rate of microns per minute to contact neighboring cells and (2) intercellular bridges are conduits for transport of membrane vesicles (1-3 microm in diameter) between adjacent cells. Immunofluorescence detected alpha-tubulin in intercellular bridges and filopodia, indicative of microtubule bundles, greater than a micron in diameter. The functional meaning, interrelationship of these membrane extensions are discussed, along with the significance of these findings for other culture systems such as stem cells. Potential applications of this work include the development of anti-cancer therapies that target intercellular communication and controlling formation of cancer spheroids for drug testing.  相似文献   

9.
被子植物的双受精是一个复杂而精密的调控过程.成功的受精依赖于配子体的正确发育以及雌配子体与雄配子体间的相互识别.研究表明,雌配子体自身成员细胞间存在广泛的胞间通讯.这种通讯不仅影响不同细胞的发育进程,也决定细胞的发育命运,从而保证雌配子体的正常发育.此外,雌配子体与雄配子体间存在胞间通讯,这种胞间通讯是雌配子体与雄配子体间相互识别的分子基础,精确调控了雄配子体准确进入珠孔、在雌配子体内适时停止伸长、尖端破裂并在特定位置释放精细胞等过程.本文概述了这些方面的最新进展,梳理胞间通讯的途径与信号,并展望了未来雌、雄配子体间及雌配子体成员细胞间通讯的研究方向与可能的应用前景.  相似文献   

10.
Long distance transport and movement of RNA through the phloem   总被引:6,自引:0,他引:6  
Cell-to-cell communication is essential for plant development and adaptation to environmental changes. As a strategy for efficient intercellular communication, plants have evolved a plant-specific symplasmic network connected via plasmodesmata that allows a locally restricted information exchange from cell to cell. A rapid information transfer over long distances is enabled via the phloem transport tubes that pervade the complete plant and thus connect even the most distant organs. While communication by small molecules like metabolites and phytohormones is comparably well studied, the intercellular trafficking of proteins and RNAs has only recently emerged as a novel mechanism of cell-to-cell and long-distance signalling in plants. In particular the non-cell-autonomous and systemic transport pathway for specific RNAs seems to play a key role in the co-ordination of important physiological processes, including virus defence, gene silencing, regulation of development, and nutrient allocation. This review is a summary of the current knowledge on RNAs contained in the phloem long-distance transport system, their transport mechanism, and their potential functions.  相似文献   

11.
Filamentous cyanobacteria of the order Nostocales are primordial multicellular organisms, a property widely considered unique to eukaryotes. Their filaments are composed of hundreds of mutually dependent vegetative cells and regularly spaced N(2)-fixing heterocysts, exchanging metabolites and signalling molecules. Furthermore, they may differentiate specialized spore-like cells and motile filaments. However, the structural basis for cellular communication within the filament remained elusive. Here we present that mutation of a single gene, encoding cell wall amidase AmiC2, completely changes the morphology and abrogates cell differentiation and intercellular communication. Ultrastructural analysis revealed for the first time a contiguous peptidoglycan sacculus with individual cells connected by a single-layered septal cross-wall. The mutant forms irregular clusters of twisted cells connected by aberrant septa. Rapid intercellular molecule exchange takes place in wild-type filaments, but is completely abolished in the mutant, and this blockage obstructs any cell differentiation, indicating a fundamental importance of intercellular communication for cell differentiation in Nostoc. AmiC2-GFP localizes in the cell wall with a focus in the cross walls of dividing cells, implying that AmiC2 processes the newly synthesized septum into a functional cell-cell communication structure during cell division. AmiC2 thus can be considered as a novel morphogene required for cell-cell communication, cellular development and multicellularity.  相似文献   

12.
Intercellular communication via gap junctions may be an important mechanism of cellular growth control. Tumor promoters can inhibit intercellular communication between cultured cells, while genotoxic carcinogens apparently lack this capability. The inhibition of intercellular communication by tumor promoters may be an essential mechanism by which tumor promotion occurs in vivo. In this study, the liver tumor promoters phenobarbital, lindane (1,2,3,4,5,6-hexachlorocyclohexane, -isomer), DDT (1,1-Bis[4-chlorophenyl],-2,2,2-trichloroethane), Aroclor 1254 (a polychlorinated biphenyl mixture) and dieldrin inhibited intercellular communication between male B6C3F1 mouse hepatocytes in primary culture. Intercellular communication was detected as the passage of [5-3H]uridine nucleotides from pre-labelled donor hepatocytes to non-labelled recipient heptocytes. Mouse hepatocyte intercellular communication was also inhibited by the skin tumor promoter TPA (12-0-tetradecanoyl phorbol-13-acetate), but not by the bladder tumor promoter saccharin. The genotoxic hepatocarcinogens dimethylnitrosamine, diethylnitrosamine, benzo[a]pyrene and 2-acetylaminofluorene, and the hepatocytotoxins bromobenzene, acetaminophen, carbon tetrachloride, chloroform and methotrexate had no effect on mouse hepatocyte intercellular communication at non-cytotoxic levels. These results suggest that the ability to inhibit mouse hepatocyte intercellular communication is an effect specific to tumor promoters.Abbreviations DDT 1,1-Bis[4-chlorophenyl]-2,2,2-trichloroethane - FBS fetal bovine serum - LDH lactate dehydrogenase - TCA trichloroacetic acid - TPA 12-0-tetradecanoyl-phorbol-13-acetate  相似文献   

13.
Cell-cell communication in plants is essential for the correct co-ordination of reproduction, growth, and development. Studies to dissect this mode of communication have previously focussed primarily on the action of plant hormones as mediators of intercellular signalling. In animals, peptide signalling is a well-documented intercellular communication system, however, relatively little is known about this system in plants. In recent years, numerous reports have emerged about small, secreted peptides controlling different aspects of plant reproduction. Interestingly, most of these peptides are cysteine-rich, and there is convincing evidence suggesting multiple roles for related cysteine-rich peptides (CRPs) as signalling factors in developmental patterning as well as during plant pathogen responses and symbiosis. In this review, we discuss how CRPs are emerging as key signalling factors in regulating multiple aspects of vegetative growth and reproductive development in plants.  相似文献   

14.
Connexin-mediated intercellular communication mechanisms include bidirectional cell-to-cell coupling by gap junctions and release/influx of molecules by hemichannels. These intercellular communications have relevant roles in numerous immune system activities. Here, we review the current knowledge about the function of connexin channels, mainly those formed by connexin-43, on immunity and inflammation. Focusing on those evidence that support the design and development of therapeutic tools to modulate connexin expression and/or channel activities with treatment potential for infections, wounds, cancer, and other inflammatory conditions.  相似文献   

15.
Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication.  相似文献   

16.
17.
The intercellular trafficking of proteins and RNAs has emerged as a novel mechanism of cell-cell communication in plant development. Plasmodesmata (PD), intercellular cytoplasmic channels, have a central role in cell-cell trafficking of regulatory proteins and RNAs. Recent studies have demonstrated that plants use either a selective or a non-selective PD trafficking pathway for regulatory proteins. Moreover, plants have developed strategies to regulate both selective and non-selective movement. Recent work has focused especially on integrating the recent understanding of the function and mechanisms of intercellular macromolecule movement through PD.  相似文献   

18.
Transfer of cellular material via tunneling nanotubes (TNT) was recently discovered as a novel mechanism for intercellular communication. The role of intercellular exchange in communication of renal epithelium is not known. Here we report extensive spontaneous intercellular exchange of cargo vesicles and organelles between primary human proximal tubular epithelial cells (RPTEC). Cells were labeled with two different quantum dot nanocrystals (Qtracker 605 or 525) and intercellular exchange was quantified by high-throughput fluorescence imaging and FACS analysis. In co-culture, a substantial fraction of cells (67.5%) contained both dyes indicating high levels of spontaneous intercellular exchange in RPTEC. The double positive cells could be divided into three categories based on the preponderance of 605 Qtracker (46.30%), 525 Qtracker (48.3%) and approximately equal content of both Qtrackers (4.57%). The transfer of mitochondria between RPTECs was also detected using an organelle specific dye. Inhibition of TNT genesis by actin polymerization inhibitor (Latrunculin B) markedly reduced intercellular exchange (>60%) suggesting that intercellular exchange in RPTEC was in part mediated via TNT-like structures. In contrast, induction of cellular stress by Zeocin treatment increased tube-genesis in RPTEC. Our data indicates an unexpected dynamic of intercellular communication between RPTEC by exchange of cytosolic material, which may play an important role in renal physiology.  相似文献   

19.
Gap-junctional intercellular communication of transformed and non-transformed rat liver epithelial cell lines was compared using a dye transfer method in the presence and absence of 12-O-tetradecanoylphorbol 13-acetate (TPA). Whereas non-transformed cells (IAR 20, non-tumorigenic in newborn rats and in nude mice) showed very high communication capacity throughout a culture period of 3 weeks, transformed cells (IAR 6-1, tumorigenic in newborn rats and in nude mice) were less able to communicate. Similar correlation between intercellular communication and expression of transformed phenotypes were also found in newly cloned epithelial cell lines, IAR 27 E and IAR 27F. When TPA was added to culture medium at 100 ng/ml, intercellular communication in all lines tested was reduced within 60 min. However, communication recovered completely from the effect within 10 h after addition of TPA. Further addition of TPA to the cultures every 24 h for 3 weeks had no effect on intercellular communication (measured 30 min after each TPA addition), suggesting that a single application of TPA made these cells refractory to further doses. A known stimulator of gap-junctional communication, db-cAMP, also increased dye transfer in IAR 20 and IAR 6-1 cells. TPA added to db-cAMP-treated cultures of IAR 20 and IAR 6-1 cells inhibited intercellular communication, suggesting that cAMP is not an antagonist of the effect of TPA on intercellular communication in these cell lines. These results are in sharp contrast to those obtained with the fibroblast cell line BALB/c 3T3, in which db-cAMP antagonized TPA effect [1] and inhibition by TPA of intercellular communication was transient only when administered during their growth phase, and was stable and continuous when TPA was applied at confluence [2], and suggest that TPA may not be an effective tumour promoter in rat liver.  相似文献   

20.
In order to study the effects of an activated H-ras-1 oncogene on gap-junctional intercellular communication, we introduced the EJ/T24 H-ras-1 oncogene into cells of the epithelial Clone 9-3 cell line. Gap-junctional intercellular communication was significantly reduced in H-ras-1-transformed Clone 9-3 derivatives; this result shows that transformation by the activated H-ras-1 oncogene can inhibit gap-junctional intercellular communication. We postulate that the activated H-ras-1 oncogene product could mediate this effect through a change in the phosphorylation of the major gap-junction protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号