首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerase activity of DNA polymerase I is important for the establishment of the pLS1 replicon by reconstitutive assembly in Streptococcus pneumoniae after uptake of exogenous pLS1 plasmid DNA. In polA mutants lacking the polymerase domain, such establishment was reduced at least 10-fold in frequency. Chromosomally facilitated establishment of pLS1-based plasmids carrying DNA homologous to the host chromosome was not so affected. However, both types of plasmid transfer gave mostly small colonies on initial selection, which was indicative of a defect in replication and filling of the plasmid pool. Once established, the pLS1-based plasmids replicated in polA mutants, but they showed segregational instability. This defect was not observed in strains with the wild-type enzyme or in an S. pneumoniae strain that encodes the polymerase and exonuclease domains of the enzyme on separate fragments. The role of DNA polymerase I in stably maintaining the plasmids depends on its polymerizing function in three separate steps of rolling-circle replication, as indicated by the accumulation of different replication intermediate forms in polA mutants. Furthermore, examination of the segregational stability of the pLS1 replicon in an Escherichia coli mutant system indicated that both the polymerase and the 5′-to-3′ exonuclease activities of DNA polymerase I function in plasmid replication.  相似文献   

2.
M Fujii  K Sakaguchi 《Gene》1980,12(1-2):95-102
A composite plasmid pLS253 was constructed from pLS103 [carrying the Bacillus subtilis leucine genes on B. subtilis (natto) plasmid pLS28] and pHV14 [a recombinant plasmid composed of pBR322 and the staphylococcal R-plasmid pC194] employing BamHI endonuclease, T4 DNA ligase, and B. subtilis transformation. All the Leu+ Cmr transformants tested harbored not only pLS253 but also two smaller plasmids designated as pLS251 and pLS252. pLS253 DNA, when purified on an agarose gel, retained both Leu+ and Cmr transforming activities; however, in all the Leu+ Cmr transformants, the two smaller plasmids reappeared. pLS251 and pLS252 exhibited Leu+- or Cm4-transforming activity, respectively, and must have been derived from the pLS253 parent by an intramolecular recombination event, since the sum of the pLS251 and pLS252 DNAs represent the entire pLS253 genome. The recombination occurred between specific sites on the B. subtilis (natto) and Staphylococcus aureus plasmids. When the composite plasmid, pLS254, was constructed by BamHI cleavage of pLS251 and pLS252 followed by ligation, Leu+ Cmr transformants segregated two smaller plasmids which were indistinguishable from the original plasmids pLS103 and pHV14, respectively. They must have been derived from pLS254 through a reversal of the original recombination event. No intermolecular recombination between pLS251 and pLS252 DNA was detected. The recombination process was independent of recE function of the host cells, and its mechanism is discussed.  相似文献   

3.
4.
Rolling-circle replication of plasmid pLS1 is initiated by the plasmid-encoded RepB protein, which has nicking-closing (site-specific DNA strand transferase) enzymatic activity. The leading-strand origin of pLS1 contains two regions, (i) the RepB-binding site, constituted by three directly repeated sequences (iterons or the bind region), and (ii) the sequence where RepB introduces the nick to initiate replication (the nic region). A series of plasmids, belonging to the pLS1 family, show features similar to those of pLS1 and have DNA sequences homologous to the pLS1 nic region. In addition, they all share homologies at the level of their Rep proteins. However, the bind regions of these plasmids are, in general, not conserved. We tested the substrate specificity of purified RepB of pLS1. The RepB protein has a temperature-dependent nicking-closing action on supercoiled pLS1, as well as on recombinant plasmid DNAs harboring the pLS1 nic region. The DNA strand transferase activity of pLS1-encoded RepB was also assayed on two plasmids of the pLS1 family, namely, pE194 and pFX2. DNAs from both plasmids were relaxed by RepB, provided they had a proper degree of supercoiling; i.e., it was necessary to modulate the supercoiling of pE194 DNA to achieve RepB-mediated DNA relaxation. Single-stranded oligonucleotides containing the nic regions of various plasmids belonging to the pLS1 family, including those of pE194 and pFX2, were substrates for RepB. In vitro, the RepB protein does not need to bind to the iterons for its nicking-closing activity.  相似文献   

5.
Two elements, the products of genes copG and rnall , are involved in the copy-number control of plasmid pLS1. RNA II is synthesized in a dosage-dependent manner. Mutations in both components have been characterized. To determine the regulatory role of the two genes, we have cloned copG , rnall or both elements at various gene dosages into pLS1-compatible plasmids. Assays of incompatibility towards wild-type or mutant pLS1 plasmids showed that: (i) the rnall gene product, rather than the DNA sequence encoding it, is responsible for the incompatibility, and (ii) CopG and RNA II act in trans and are able to correct up fluctuations in pLS1 copy number. A correlation between the gene dosage at which the regulatory elements were supplied and the incompatibility effect on the resident plasmid was observed. The entire copG-rnall circuit has a synergistic effect when compared with any of its components in the correction of pLS1 copy-number fluctuations, indicating that, in the homoplasmid steady-state situation, the control of pLS1 replication is exerted by the co-ordinate action of CopG and RNA II.  相似文献   

6.
Promiscuous, rolling-circle replication plasmid pMV158 determines tetracycline resistance to its host and can be mobilized by conjugation. Plasmid pLS1 is a deletion derivative of pMV158 that has lost its conjugative mobilization ability. Both plasmids replicate efficiently and are stably inherited in Streptococcus pneumoniae. We have analyzed the effect of pMV158 and pLS1 carriage on the bacterial growth rate. Whereas the parental plasmid does not significantly modify the cell doubling time, pLS1 slows down the growth of the bacterial host by 8-9%. The bases of the differential burden caused by pMV158 and pLS1 carriage are not yet understood. The negligible cost of the pMV158 parental natural plasmid on the host might explain the prevalence of small, multicopy, rolling-circle replication plasmids, even though they lack any selectable trait.  相似文献   

7.
A plasmid (pLS104) carrying a tandem repetition of the leu region of the Bacillus subtilis chromosome arose spontaneously from pLS103, which carried a single copy of the leu region. Plasmid preparations from strains harboring pLS104 also contained the original plasmid, pLS103, and, in some preparations, plasmids carrying three or four repetitions of the leu region. These plasmids were shown to be generated by recombination between homologous deoxyribonucleic acid (DNA) segments in the tandemly repeated DNA regions on the plasmids, but not by recombinations between specific DNA sites. These phenomena were observed in a recE4-Independent background, showing that recombination of the homologous DNA sequences does not require the recE-Independent gene product(s).  相似文献   

8.
The use of Bacillus subtilis 168 as the initial host for molecular cloning and subsequent delivery of the engineered DNA to other Bacillus hosts appears attractive, and would lead to an efficient DNA manipulation system. However, methods of delivery to other Bacillus species are limited due to their inability to develop natural competence. An alternative, unexplored conjugational transfer method drew our attention and a B. subtilis native plasmid, pLS30, isolated from B. subtilis (natto) strain IAM1168 was characterized for this aim. The nucleotide sequence (6,610 bp) contained the mob gene and its recognition sequence, oriT, that features pLS30 as a mobile plasmid between Bacillus species on conjugational transfer. Plasmid pLS3001, a chimera with a pBR322-based plasmid prepared in Escherichia coli to confer an antibiotic resistance marker, showed apparent mobilizing activity in the pLS20-mediated conjugational transfer system recently established. The rep gene and associated palT1-like sequence common to all other pLS plasmids previously sequenced indicated that pLS30 is a typical rolling circle replicating (RCR) type plasmid. Due to the significant stability of pLS30 in IAM1168, application of a mobile plasmid would allow quick propagation to Bacillus species.  相似文献   

9.
We have characterized a region in the streptococcal plasmid pLS1 located between nucleotides 4103 and 4218 which is a signal involved in the conversion of single stranded intermediates of replication to double stranded plasmid forms. This region has a large axis of dyad symmetry resulting in the formation of a secondary structure as revealed by the location of endonuclease S1-cleavage sites in supercoiled covalently closed circular pLS1 DNA. Deletions affecting this region caused a fivefold reduction in plasmid copy number, plasmid instability and the accumulation of single-stranded DNA intermediates. The conversion signal of pLS1 has homologues in other staphylococcal plasmids, sharing a consensus sequence located in the loop of the signal. Computer assisted analysis showed that the signal detected in pLS1 has a high degree of homology with the complementary strand origin of the Escherichia coli single stranded bacteriophages phi X174 and M13.  相似文献   

10.
11.
D G McDowell  N H Mann 《Plasmid》1991,25(2):113-120
The complete nucleotide sequence of a small (2.055 kb) plasmid pHD2 from Bacillus thuringiensis var. kurstaki strain HD1-DIPEL was obtained. The sequence encoded two open reading frames (ORFs) which corresponded to polypeptides of Mr 26,447 and 9122. Comparison of the sequence with those obtained for other plasmids from Gram-positive organisms suggested that pHD2 may belong to the extensive and highly interrelated family of plasmids exhibiting replication via a ssDNA intermediate: a putative nick site was proposed on the basis of sequence homology and one ORF exhibited distant homology with the site-specific topoisomerases encoded by the pT181 family of staphylococcal plasmids, while the other ORF exhibited considerable similarity to a small polypeptide (RepA) encoded by plasmid pLS1. Constructs consisting of pHD2, pBR322, and the chloramphenicol resistance gene from pC194 were capable of stable maintenance in B. thuringiensis var. israelensis, but were subject to apparently specific deletions in the heterologous host. The same constructs could not be established in Bacillus subtilis.  相似文献   

12.
The lactococcal plasmid pFX2 belongs to a family of plasmids, whose prototype is the streptococcal plasmid pMV158, that replicates by the rolling circle mechanism. Determination of the nucleotide sequence of the repX gene of pFX2 allowed us to make some minor corrections in the published sequence, and to show that the repX gene is identical to the rep gene of plasmid pWV01. We have established pFX2 in Escherichia coli and in Streptococcus pneumoniae. In the latter host, we have defined in vivo the nick site introduced by the RepX protein. Plasmid pFX2 and the pMV158 derivative pLS1 exhibit a moderate degree of incompatibility in S. pneumoniae. Cloning of the double strand origin (dso) of pFX2 into a high-copy-number plasmid that is compatible with the pMV158 replicon led to an increase in incompatibility toward pLS1. Plasmids pFX2 and pLS1 exhibit homologies in their Rep proteins and in their dso sequences, but not in their negative control elements. Thus, the observed incompatibility indicates that cross-recognition of Rep proteins and dso takes place. Received: 25 May 1998 / Accepted: 8 July 1998  相似文献   

13.
The streptococcal plasmid pMV158 replicates by the rolling-circle mechanism. One feature of this replication mechanism is the generation of single-stranded DNA intermediates which are converted to double-stranded molecules. Lagging-strand synthesis initiates from the plasmid single-stranded origin, sso. We have used the pMV158-derivative plasmid pLS1 (containing the ssoA type of lagging-strand origin) and a set of pLS1 derivatives with mutations in two conserved regions of the ssoA (the recombination site B [RSB] and a conserved 6-nucleotide sequence [CS-6]) to identify sequences important for plasmid lagging-strand replication in Streptococcus pneumoniae. Cells containing plasmids with mutations in the RSB accumulated 30-fold more single-stranded DNA than cells containing plasmids with mutations in the CS-6 sequence. Specificity of lagging-strand synthesis was tested by the development of a new in vitro replication system with pneumococcal cell extracts. Four major initiation sites of lagging-strand DNA synthesis were observed. The specificity of initiation was maintained in plasmids with mutations in the CS-6 region. Mutations in the RSB region, on the other hand, resulted in the loss of specific initiation of lagging-strand synthesis and also severely reduced the efficiency of replication.  相似文献   

14.
15.
16.
17.
Summary Recombinant plasmids composed of Bacillus subtilis 168 leucine genes and a B. subtilis (natto) plasmid have been constructed in a recombination deficient (recE4) mutant of Bacillus subtilis 168. The process involved EcoRI fragmentation and ligation of a B. subtilis (natto) plasmid and a composite plasmid RSF2124-B · leu in which B. subtilis 168 leucine genes are linked to the R-factor RSF2124. A constructed plasmid (pLS102) was found to be composed of an EcoRI fragment derived from the vector plasmid and two tandemly repeated EcoRI fragments carrying the leucine genes. A derivative plasmid (pLS101 or pLS103) consisting of one molecule each of the EcoRI fragments was obtained by in vivo intramolecular recombination between the repeated leucine gene fragments in pLS102. pLS103 was cleaved once with BamNI, SmaI and HpaI. Insertion of foreign DNA (Escherichia coli plasmid pBR322) into the BamNI site inactivated leuA but not the leuC function which thus can serve as selective marker if the plasmid is used as vector in molecular cloning. The penicillin resistance carried in pBR322 was not functionally expressed in B. subtilis cells. By partial digestion of pLS103 with HindIII followed by ligation with T4-induced ligase, pLS107 was obtained which contained only one EcoRI site. However, insertion of exogenous DNA (pBR322) into this EcoRI site inactivated both leuA and leuC functions.  相似文献   

18.
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default “OFF” state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.  相似文献   

19.
Summary Plasmid R46 (an R factor conferring resistance to ampicillin, sulfonamides, streptomycin and tetracycline) reduces the bactericidal effect of UV irradiation but increases its mutagenic effect (reversion of hisG46), and raises the frequency of spontaneous reversion (mutator effect). Putative deletion mutants of R46 were obtained by transduction of the plasmid, then two successive conjugal transfers. Plasmids of five of six deletion classes, each with a different combination of drug resistance traits, retained conjugative ability and the UV-protecting, mutagenesis-enhancing and mutator effects of R46. (pKM101, used in the Ames system to enhance responsiveness to chemical mutagens, is one such mutant of R46.) Plasmids of a sixth class, represented by pKM115, conferred resistance only to streptomycin and were non-conjugative. All of several such plasmids (of independent origin) had a much stronger mutator effect than did R46, but lacked UV-protecting ability and did not enhance the mutagenic effect of UV irradiation. We infer that R46 possesses: (i) a gene, uvp, which increases capacity for error-prone repair of UV-damaged DNA, and thus causes both UV protection and enhancement of UV mutagenesis; (ii) gene(s) whose action in the absence of gene uvp greatly increases the frequency of spontaneous reversion of hisG46. A plasmid of another incompatibility group, pLS51, has UV-protecting and mutagenesis-enhancing effect but lacks the mutator property; introduction of pLS51 into a clone of hisG46 carrying a pKM115-type plasmid greatly reduced its spontaneous reversion rate, as expected if pLS51 also has a uvp gene able to modulate the mutator effect of R46-derived gene(s) in the pKM115-type plasmid.  相似文献   

20.
The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号