首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
KOR activation of Gβγ dependent signaling results in analgesia, whereas the dysphoric effects of KOR agonists are mediated by a different pathway involving G protein receptor kinase and non-visual arrestin. Based on this distinction, a partial KOR agonist that does not efficiently activate arrestin-dependent biased signaling may produce analgesia without dysphoria. No KOR-selective partial agonists are currently available, and preclinical assessment is complicated by sequence differences between rodent (r) and human (h) KOR. In this study, we compared the signaling initiated by the available partial agonists. Pentazocine was significantly more potent at activating p38 MAPK in hKOR than rKOR expressed in HEK293 cells but equally potent at arrestin-independent activation of ERK1/2 in hKOR and rKOR. Similarly, butorphanol increased phospho-p38-ir in hKOR-expressing cells but did not activate p38 in rKOR-HEK293. Like pentazocine, butorphanol was equally efficacious at activating ERK1/2 in rKOR and hKOR. In contrast, levorphanol, nalorphine, and U50,488 did not distinguish between hKOR and rKOR in p38 MAPK activation. Consistent with its low potency at p38 activation, pentazocine did not produce conditioned place aversion in mice. hKOR lacks the Ser-369 phosphorylation site in rKOR required for G protein receptor kinase/arrestin-dependent p38 activation, but mutation of the Ser-358 to asparagine in hKOR blocked p38 activation without affecting the acute arrestin-independent activation of ERK1/2. This study shows that hKOR activates p38 MAPK through a phosphorylation and arrestin-dependent mechanism; however, activation differs between hKOR and rKOR for some ligands. These functional selectivity differences have important implications for preclinical screening of partial KOR agonists.  相似文献   

3.
Comparative ultrastructural studies were performed on the development of Junín virus in mouse brain and in cerebellum explants and brain monolayers of the same animal. In mouse brain, neurons and astrocytes released virus particles by a budding mechanism identical to that previously described for this virus. In the neurons, the viral multiplication took place in the perikarion as well as in the cytoplasmic processes, including areas near synapses. Viral particles were observed emerging from pericapillary neurons and astrocytes. In the explants, the budding also occurred in neurons and astrocytes. In the monolayers, however, the virus originated in astrocytes and cells of fibroblastic appearance, which were the two cell types that developed in this substrate. These results indicate that the characteristics of the development of Junín virus in mouse brain are faithfully reproduced in cerebellum explants from the same animal, thus allowing some extrapolation of data from one system to the other. The explant proved to be a better model than the monolayer, not only because it reproduced the structural complexity of nervous tissue better, but also because it contains neurons and astrocytes, i.e., the two cell types that release the virus in the in vivo system.  相似文献   

4.
The fibrotic scar which is formed after traumatic damage of the central nervous system (CNS) is considered as a major impediment for axonal regeneration. In the process of the fibrotic scar formation, meningeal fibroblasts invade and proliferate in the lesion site to secrete extracellular matrix proteins, such as collagen and laminin. Thereafter, end feet of reactive astrocytes elaborate a glia limitans surrounding the fibrotic scar. Transforming growth factor-β1 (TGF-β1), a potent scar-inducing factor, which is upregulated after CNS injury, has been implicated in the formation of the fibrotic scar and glia limitans. In the present study, expression of receptors to TGF-β1 was examined by in situ hybridization histochemistry in transcortical knife lesions of the striatum in the mouse brain in combination with immunofluorescent staining for fibroblasts and astrocytes. Type I and type II TGF-β receptor mRNAs were barely detected in the intact brain and first found in meningeal cells near the lesion 1 day postinjury. Many cells expressing TGF-β receptors were found around the lesion site 3 days postinjury, and some of them were immunoreactive for fibronectin. After 5 days postinjury, many fibroblasts migrated from the meninges to the lesion site formed the fibrotic scar, and most of them expressed TGF-β receptors. In contrast, few of reactive astrocytes expressed the receptors throughout the postinjury period examined. These results indicate that meningeal fibroblasts not reactive astrocytes are a major target of TGF-β1 that is upregulated after CNS injury.  相似文献   

5.
6.
There is considerable evidence to suggest that drug actions at the κ-opioid receptor (KOR) may represent a means to control pain perception and modulate reward thresholds. As a G protein-coupled receptor (GPCR), the activation of KOR promotes Gαi/o protein coupling and the recruitment of β-arrestins. It has become increasingly evident that GPCRs can transduce signals that originate independently via G protein pathways and β-arrestin pathways; the ligand-dependent bifurcation of such signaling is referred to as “functional selectivity” or “signaling bias.” Recently, a KOR agonist, 6′-guanidinonaltrindole (6′-GNTI), was shown to display bias toward the activation of G protein-mediated signaling over β-arrestin2 recruitment. Therefore, we investigated whether such ligand bias was preserved in striatal neurons. Although the reference KOR agonist U69,593 induces the phosphorylation of ERK1/2 and Akt, 6′-GNTI only activates the Akt pathway in striatal neurons. Using pharmacological tools and β-arrestin2 knock-out mice, we show that KOR-mediated ERK1/2 phosphorylation in striatal neurons requires β-arrestin2, whereas Akt activation depends upon G protein signaling. These findings reveal a point of KOR signal bifurcation that can be observed in an endogenous neuronal setting and may prove to be an important indicator when developing biased agonists at the KOR.  相似文献   

7.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

8.
The striatum is divided into two compartments, the striosomes and extrastriosomal matrix, which differ in several cytochemical markers, input-output connections, and time of neurogenesis. Since it is thought that limbic, reward-related information and executive aspects of behavioral information may be differentially processed in the striosomes and matrix, respectively, intercompartmental communication should be of critical importance to proper functioning of the basal ganglia-thalamocortical circuits. Cholinergic interneurons are in a suitable position for this communication since they are preferentially located in the striosome-matrix boundaries and are known to elicit a conditioned pause response during sensorimotor learning. Recently, mu-opioid receptor (MOR) activation was found to presynaptically suppress the amplitude of GABAergic inhibitory postsynaptic currents in striosomal cells but not in matrix cells. Disinhibition of cells in the striosomes is further enhanced by inactivation of the protein kinase C cascade. We discuss in this review the possibility that MOR activation in the striosomes affects the activity of cholinergic interneurons and thus leads to changes in synaptic efficacy in the striatum.  相似文献   

9.
Following the binding of estrogen to estrogen receptor (ER)β ligand binding domain (LBD) and its interaction with the target genes, a host of nuclear proteins is recruited to regulate the expression of specific genes(s). It is not known which proteins interact with ERβLBD and whether they vary with age and sex in the brain. Therefore, using pull down assay, immunoprecipitation and immunoblotting, we report that cell signaling molecules Trk A and Src interacted with ERβLBD, and showed alteration in the level of interaction and expression in the brain of AKR strain young (6 weeks), adult (25 weeks) and old (70 weeks) mice of both sexes. Trk A showed decreasing interaction with age, and lower expression in adult as compared to young and old males, whereas female mice exhibited decline in both interaction and expression as a function of age. On the other hand, Src interaction with ERβLBD decreased, but its expression increased with age in males, whereas the interaction and expression was lower in adult but higher in old as compared to young females. These findings suggest the implication of Trk A and Src in ERβ mediated brain functions and related disorders during aging.  相似文献   

10.
11.
The crystal structures of opioid receptors provide a novel platform for inquiry into opioid receptor function. The molecular determinants for activation of the κ-opioid receptor (KOR) were studied using a combination of agonist docking, functional assays, and site-directed mutagenesis. Eighteen positions in the putative agonist binding site of KOR were selected and evaluated for their effects on receptor binding and activation by ligands representing four distinct chemotypes: the peptide dynorphin A(1–17), the arylacetamide U-69593, and the non-charged ligands salvinorin A and the octahydroisoquinolinone carboxamide 1xx. Minimally biased docking of the tested ligands into the antagonist-bound KOR structure generated distinct binding modes, which were then evaluated biochemically and pharmacologically. Our analysis identified two types of mutations: those that affect receptor function primarily via ligand binding and those that primarily affect function. The shared and differential mechanisms of agonist binding and activation in KOR are further discussed. Usually, mutations affecting function more than binding were located at the periphery of the binding site and did not interact strongly with the various ligands. Analysis of the crystal structure along with the present results provide fundamental insights into the activation mechanism of the KOR and suggest that “functional” residues, along with water molecules detected in the crystal structure, may be directly involved in transduction of the agonist binding event into structural changes at the conserved rotamer switches, thus leading to receptor activation.  相似文献   

12.
The delta opioid receptor (DOPr), whilst not the primary target of clinically used opioids, is involved in development of opioid tolerance and addiction. There is growing evidence that DOPr trafficking is involved in drug addiction, e.g., a range of studies have shown increased plasma membrane DOPr insertion during chronic treatment with opioids. The present study used a transgenic mouse model in which the C-terminal of the DOPr is tagged with enhanced-green fluorescence protein to examine the effects of chronic morphine treatment on surface membrane expression in striatal cholinergic interneurons that are implicated in motivated learning following both chronic morphine and morphine sensitization treatment schedules in male mice. A sex difference was noted throughout the anterior striatum, which was most prominent in the nucleus accumbens core region. Incontrast with previous studies in other neurons, chronic exposure to a high dose of morphine for 6 days had no effect, or slightly decreased (anterior dorsolateral striatum) surface DOPr expression. A morphine sensitization schedule produced similar results with a significant decrease in surface DOPr expression in nucleus accumbens shell. These results suggest that chronic morphine and morphine sensitisation treatment may have effects on instrumental reward-seeking behaviours and learning processes related to drug addiction, via effects on striatal DOPr function.  相似文献   

13.
Estrogens exert a variety of effects in both reproductive and non-reproductive tissues. With the discovery of ERα splice variants, prior assumptions concerning tissue-specific estrogen signaling need to be re-evaluated. Accordingly, we sought to determine the expression of the classical estrogen receptors and ERα splice variants across reproductive and non-reproductive tissues of male and female mice. Western blotting revealed that the full-length ERα66 was mainly present in female reproductive tissues but was also found in non-reproductive tissues at lower levels. ERα46 was most highly expressed in the heart of both sexes. ERα36 was highly expressed in the kidneys and liver of female mice but not in the kidneys of males. ERβ was most abundant in non-reproductive tissues and in the ovaries. Because the kidney has been reported to be the most estrogenic non-reproductive organ, we sought to elucidate ER renal expression and localization. Immunofluorescence studies revealed ERα66 in the vasculature and the glomerulus. It was also found in the brush border of the proximal tubule and in the cortical collecting duct of female mice. ERα36 was evident in mesangial cells and tubular epithelial cells of both sexes, as well as podocytes of females but not males. ERβ was found primarily in the podocytes in female mice but was also present in the mesangial cells in both sexes. Within the renal cortex, ERα46 and ERα36 were mainly located in the membrane fraction although they were also present in the cytosolic fraction. Given the variability of expression patterns demonstrated herein, identification of the specific estrogen receptors expressed in a tissue is necessary for interpreting estrogenic effects. As this study revealed expression of the ERα splice variants at multiple sites within the kidney, further studies are warranted in order to elucidate the contribution of these receptors to renal estrogen responsiveness.  相似文献   

14.
Journal of Evolutionary Biochemistry and Physiology - A large proportion of patients with epilepsy suffer from pharmacoresistant forms of the disease, and this makes the search for new treatments...  相似文献   

15.
The developmental profile of opioid receptors was studied in rat and guinea pig striatum and hippocampus. The two brain regions show different receptor profiles during development, which are characteristic for each animal. Yet, both tissues and animal species share one common feature; the binding of the universal opioid ligand [3H]diprenorphine per milligram of protein is high at the early embryonic period, it decreases toward birth, and then gradually increases to the adult levels. This apparent transient expression of the receptors during the early developmental stage was manifested in the guinea pig as an actual decrease in the total receptor number. As an attempt to characterize the receptors involved in this process, the binding of the selective mu-opioid ligand [3H]Tyr-D-Ala-Gly-MePhe-NH(CH2)OH [( 3H]DAGO) was studied in striatal membranes of young (P1) and adult (P60) rats. Competition between [3H]DAGO and the delta-selective peptide Tyr-D-Pen-Gly-Phe-D-Pen (DPDPE) shows higher affinity of the delta opioid to P1 membranes than to P60 membranes, though the number of delta receptors in P1 membranes is very small. This observation is in line with a previous study suggesting that opioid receptors in embryonic striatum and hippocampus are less selective to various opioids than those of adult brain. An additional difference between adult and embryonic tissue was observed on Scatchard analysis of [3H]DAGO binding; striatum P60 membranes exhibit one binding site with a KD of 0.8 +/- 0.1 nM and Hill coefficient of 0.96, whereas striatum P1 membranes bind the peptide in an apparent cooperative fashion with an overall Hill coefficient of 1.30.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Glycogen synthase kinase-3β (GSK3β) is highly abundant in the brain. Various biochemical analyses have indicated that GSK3β is localized to different intracellular compartments within brain cells. However, ultrastructural visualization of this kinase in various brain regions and in different brain cell types has not been reported. The goal of the present study was to examine GSK3β distribution and subcellular localization in the brain using immunohistochemistry combined with light and electron microscopy. Initial examination by light microscopy revealed that GSK3β is expressed in brain neurons and their dendrites throughout all the rostrocaudal extent of the adult mouse brain, and abundant GSK3β staining was found in the cortex, hippocampus, basal ganglia, the cerebellum, and some brainstem nuclei. Examination by transmission electron microscopy revealed highly specific subcellular localization of GSK3β in neurons and astrocytes. At the subcellular level, GSK3β was present in the rough endoplasmic reticulum, free ribosomes, and mitochondria of neurons and astrocytes. In addition GSK3β was also present in dendrites and dendritic spines, with some postsynaptic densities clearly labeled for GSK3β. Phosphorylation at serine-9 of GSK3β (pSer9GSK3β) reduces kinase activity. pSer9GSK3β labeling was present in all brain regions, but the pattern of staining was clearly different, with an abundance of labeling in microglia cells in all regions analyzed and much less neuronal staining in the subcortical regions. At the subcellular level pSer9GSK3β labeling was located in the endoplasmic reticulum, free ribosomes and in some of the nuclei. Overall, in normal brains constitutively active GSK3β is predominantly present in neurons while pSer9GSK3β is more evident in resting microglia cells. This visual assessment of GSK3β localization within the subcellular structures of various brain cells may help in understanding the diverse role of GSK3β signaling in the brain.  相似文献   

18.
The functions of type II diacylglycerol kinase (DGK) δ and -η in the brain are still unclear. As a first step, we investigated the spatial and temporal expression of DGKδ and -η in the brains of mice. DGKδ2, but not DGKδ1, was highly expressed in layers II–VI of the cerebral cortex; CA–CA3 regions and dentate gyrus of hippocampus; mitral cell, glomerular and granule cell layers of the olfactory bulb; and the granule cell layer in the cerebellum in 1- to 32-week-old mice. DGKδ2 was expressed just after birth, and its expression levels dramatically increased from weeks 1 to 4. A substantial amount of DGKη (η1/η2) was detected in layers II–VI of the cerebral cortex, CA1 and CA2 regions and dentate gyrus of the hippocampus, mitral cell and glomerular layers of the olfactory bulb, and Purkinje cells in the cerebellum of 1- to 32-week-old mice. DGKη2 expression reached maximum levels at P5 and decreased by 4 weeks, whereas DGKη1 increased over the same time frame. These results indicate that the expression patterns of DGK isozymes differ from each other and also from other isozymes, and this suggests that DGKδ and -η play distinct and specific roles in the brain.  相似文献   

19.
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common β (βc) receptor is shared by the three cytokines and functions together with cytokine-specific α subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human βc (hβc) and unidentified cysteine residues in the N-terminal domains of the α receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hβc is part of the cytokine binding epitope of this receptor and that an IL-3Rα isoform lacking the N-terminal Ig-like domain (the “SP2” isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hβc and the related mouse receptor, βIL-3, could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hβc led to both a complete loss of high affinity binding with the human IL-3Rα SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, βIL-3, not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Rα SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hβc and βIL-3 in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号