首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary To identify the mildew resistance locus Mla in barley with molecular markers, closely linked genomic RFLP clones were selected with the help of near-isogenic lines having the Pallas and Siri background. Out of 22 polymorphic clones 3 were located around the Mla locus on chromosome 5 with a distance of 5.1 + 2.9 cM (MWG 1H068), 4.2±1.7 cM (MWG 1H060) and 0.7 ± 0.7 cM (MWG 1H036), respectively. The polymorphic clone MWG 1H036 displayed the same RFLP pattern in both Pallas and Siri near-isogenic lines and in different varieties digested with six restriction enzymes possessing the same mildew resistance gene. The alleles of the Mla locus were grouped in 11 classes according to their specific RFLP patterns; 3 of these groups contain the majority of Mla alleles already used in barley breeding programs in Europe.  相似文献   

2.
Linkage of randomly amplified polymorphic DNA (RAPD) markers with a single dominant gene for resistance to black root rot (Chalara elegans Nag Raj and Kendrick; Syn. Thielaviopsis basicola [Berk. and Broome] Ferraris) of tobacco (Nicotiana tabacum L.), which was transferred from N. debneyi Domin, was investigated in this study. There were 2594 repeatable RAPD fragments generated by 441 primers on DNAs of Delgold tobacco, a BC5F8 near isogenic line (NIL) carrying the resistance gene in a Delgold background, and PB19, the donor parent of the resistance gene. Only 7 of these primers produced eight RAPD markers polymorphic between Delgold and PB19, indicating there are few RAPD polymorphisms between them despite relatively dissimilar pedigrees. Five of the eight RAPD markers were not polymorphic between Delgold and the NIL. All of these markers proved to be unlinked with the resistance gene in F2 linkage tests. Of the remaining three RAPD markers polymorphic between Delgold and the NIL, two were shown to be strongly linked with the resistance gene; one in coupling and the other in repulsion. Application of the two RAPDs in the elimination of linkage drag associated with the N. debneyi resistance gene and marker-assisted selection for the breeding of new tobacco cultivars with the resistance gene is discussed.  相似文献   

3.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

4.
Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar LAC23. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar Apura, was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.  相似文献   

5.
An extended map of the sugar beet genome containing RFLP and RAPD loci   总被引:6,自引:0,他引:6  
An updated map of sugar beet (Beta vulgaris L. ssp. vulgaris var altissima Doell) is presented. In this genetic map we have combined 248 RFLP and 50 RAPD loci. Including the loci for rhizomania resistance Rr1, hypocotyl colour R and the locus controlling the monogerm character M, 301 loci have now been mapped to the nine linkage groups covering 815 cM. In addition, the karyotype of some of the Beta vulgaris chromosomes has been correlated with existing RFLP and RAPD linkage maps.  相似文献   

6.
Summary The powdery mildew disease resistance gene Ml(La) was found to belong to a locus on barely chromosome 2. We suggest that this locus be designated MlLa. Linkage analysis was carried out on 72 chromosome-doubled, spring-type progeny lines from a cross between the winter var Vogelsanger Gold and the spring var Alf. A map of chromosome 2 spanning 119cM and flanked by two peroxidase gene loci was constructed. In addition to the Laevigatum resistance locus the map includes nine RFLP markers, the two peroxidase gene loci and the six-row locus in barley.  相似文献   

7.
RFLP analysis was conducted on a population derived from a three-way cross to determine the location of the hybrid sterility locus, S-5, in relation to mapped molecular markers and to identify markers that would be useful for selection in breeding. S-5 is of interest to rice breeders because it is associated with spikelet sterility of F1 hybrids in Indica/Japonica crosses. Identification of an S-5 allele which confers fertility in Indica/Japonica hybrids when introgressed into either the Indica or the Japonica parent has been reported. Varieties carrying this S-5 n allele are known as wide compatibility varieties (WCV). Our data suggests that RFLP marker RG213 on chromosome 6 is closely linked to the S-5 locus and can be efficiently used to identify wide compatibility (WC) lines. RG213 is a single-copy genomic clone that detects three bands of different molecular weights in DNA from Japonica (Akihikari) and Indica (IR36) varieties and WC line (Nekken 2). We demonstrate that the three alleles detected by this marker could be used to trace the inheritance of the wide compatible phenotype in breeders' material.  相似文献   

8.
The relationship of abscisic acid (ABA) and 2-trans-abscisic acid (t-ABA) to alternate bearing has been examined in Wilking mandarin (Citrus reticulata Blanco) trees. Leaves, stems and buds of trees loaded with fruit (on trees) had 4.3, 6.0 and 2.2 fold higher ABA levels than the corresponding organs from off trees. Leaves had higher ABA levels than stems and buds in both on and off trees. t-ABA was non-detectable in Wilking leaf, stem and bud tissue. Amounts of t-ABA not exceeding 40% of the ABA content, were found in Shamouti and Valencia orange buds and in Wilking fruit peel.The elevated levels of ABA in on tree organs may reflect a stress imposed by the fruit overload.  相似文献   

9.
Nine different F2 families of peach [Prunus persica (L.) Batsch] were analyzed for linkage relationships between 14 morphological and two isozyme loci. Linkage was detected between weeping (We) and white flower (W), 33 cM; double flower (Dl) and pillar (Br), 10 cM; and flesh color (Y) and malate dehydrogenase (Mdh1), 26 cM. A leaf variant phenotypically distinct from the previously reported wavy-leaf (Wa) mutant in peach was found in progeny of Davie II. The new willow-leaf character (designated Wa2) was closely linked (0.4 cM) to a new dwarf phenotype (designated Dw3). Two families derived from the pollen-fertile cultivar White Glory segregated for pollen sterility, but segregation did not follow a 31 ratio. Evidence is presented suggesting that White Glory possesses a pollen-sterility gene (designated Ps2) that is non-allelic to the previously reported pollen-sterility gene (Ps) in peach. Ps2 was linked to both weeping (We-Ps2, 15.5 cM) and white flower (Ps2-W, 25.3 cM). A genomic map of peach containing 83 RAPD, one isozyme, and four morphological markers was generated using an F2 family obtained by selfing an NC174RL x Pillar F1. A total of 83 RAPD markers were assigned to 15 linkage groups. Various RAPD markers were linked to morphological traits. Bulked segregant analysis was used to identify RAPD markers flanking the red-leaf (Gr) and Mdh1 loci in the NC174RL x Pillar and Marsun x White Glory F2 families, respectively. Three markers flanking Mdh1 and ten markers flanking Gr were identified. The combination of RAPD markers and bulked segregant analysis provides an efficient method of identifying markers flanking traits of interest. Markers linked to traits that can only be scored late in development are potentially useful for marker-aided selection in trees. Alternatives for obtaining additional map order information for repulsion-phase markers in large F2 populations are proposed.This work was supported in part by the McKnight Foundation, North Carolina Biotechnology Center, North Carolina State University Forest Biotechnology Research Consortium, and the North Carolina Agricultural Research Service, Raleigh, North Carolina  相似文献   

10.
Summary Chris wheat possessed genes Sr5, Sr7a, Sr8a, Sr9g and Sr12. W3746, derived from the cross Chris/Baart, possessed Sr7a and Sr12. The response conferred by Sr7a was influenced by the genetic background. Although Sr7a or Sr12 alone conferred no observable resistance upon adult plants, the adult resistances of Chris and W3746 to predominant pathotypes appeared to be associated with the interaction of Sr7a and Sr12, or genes at closely linked loci.  相似文献   

11.
A linkage map of the rapeseed genome comprising 204 RFLP markers, 2 RAPD markers, and 1 phenotypic marker was constructed using a F1 derived doubled haploid population obtained from a cross between the winter rapeseed varieties Mansholt's Hamburger Raps and Samourai. The mapped markers were distributed on 19 linkage groups covering 1441 cM. About 43% of these markers proved to be of dominant nature; 36% of the mapped marker loci were duplicated, and conserved linkage arrangements indicated duplicated regions in the rapeseed genome. Deviation from Mendelian segregation ratios was observed for 27.8% of the markers. Most of these markers were clustered in 7 large blocks on 7 linkage groups, indicating an equal number of effective factors responsible for the skewed segregations. Using cDNA probes for the genes of acyl-carrier-protein (ACP) and -ketoacyl-ACP-synthase I (KASI) we were able to map three and two loci, respectively, for these genes. The linkage map was used to localize QTLs for seed glucosinolate content by interval mapping. Four QTLs could be mapped on four linkage groups, giving a minimum number of factors involved in the genetic control of this trait. The estimated effects of the mapped QTLs explain about 74% of the difference between both parental lines and about 61.7 % of the phenotypic variance observed in the doubled haploid mapping population.  相似文献   

12.
Summary Genetic analysis for leaf rust reaction of two widely adapted cultivars, Sonalika and WL 711, has been done using 21 near isogenic Lr lines and rust culture IL004 — avirulent on the two cultivars and all the Lr lines used. The segregation pattern in the F2 generation indicated the presence of a recessive gene in Sonalika and of a dominant gene in WL 711. These genes in cultivars Sonalika and WL 711 have been identified as Lr 11 and Lr 13, respectively. Gene Lr 13 is no longer effective in WL 711 but it continues to give field resistance in the backgrounds of Chris, Prelude and Thatcher. There has been no significant change in the virulence spectrum of the leaf rust pathogen in India with the release of WL 711. High susceptibility of WL 711 seems to be due to the evolution of more aggressive forms of the pathogen to this cultivar. The gene Lr 11, which behaves as a recessive in Sonalika, was effective against leaf rust when this cultivar was released. The high susceptibility of Sonalika is probably due to an increase in the frequency of race 77 virulent on Lr 11. Lr 11 has shown a dominance reversal in the background of Sonalika. Present results suggest that interaction of resistance genes with the background genotype must be studied for their effective use in breeding programme.  相似文献   

13.
Three new major, race-specific, resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) were identified in three barley lines, RS42-6*O, RS137-28*E, and HSY-78*A, derived from crosses with wild barley (Hordeum vulgare ssp. spontaneum). The resistance gene origining from wild barley in line RS42-6*O, showed a recessive mode of inheritance, whereas the other wild barley genes were (semi)-dominant. RFLP mapping of these three genes was performed in segregating F2 populations. The recessive gene in line RS42-6*O, was localized on barley chromosome 1S (7HS), while the (semi)-dominant genes in lines RS137-28*E, and HSY-78*A, were localized on chromosomes 1L (7HL) and 7L (5HL), respectively. Closely linked RFLP clones mapped at distances between 2.6cM and 5.3 cM. Hitherto, specific loci for powdery mildew resistance in barley had not been located on these chromosomes. Furthermore, tests for linkage to the unlocalized resistance gene Mlp revealed free segregation. Therefore, these genes represent new loci and new designations are suggested: mlt (RS42-6*O), Mlf (RS137-28*E), and Mlj (HSY-78*A). Comparisons with mapped QTLs for mildew resistance were made and are discussed in the context of homoeology among the genomes of barley (H-vulgare), wheat (Triticum aestivum), and rye (Secale cereale). Duplications of RFLP bands detected in the neighbourhood of Mlf and mlt might indicate an evolutionary interrelationship to the Mla locus for mildew resistance.  相似文献   

14.
Regenerative potential of the calli of nineteen genotypes of Avena sativa, Avena nuda, Avena byzantina and one interspecific hybrid were compared over three successive cultures. Highly significant genotype and genotype × subculture interactions were observed. Among the highest plant regenerable genotypes were Corbit (first subculture); GAF/Park and 88Ab3073 (second subculture); and GAF/Park and 87Ab5932 (third subculture). These genotypes regenerated on an average 10 to 17 plants each from a 200 mg callus mass after a 30 to 45 proliferation period. GAF/Park, a progeny of an interspecific cross, regenerated plants at a significantly higher level (11.85 plants/rep), followed by the similarly performing A. sativa (6.23 plants) and A. nuda (5.06 plants) genotypes, which were significantly higher than the A. byzantina genotypes (2.07 plants). Four genotypes were tested for their adaptability to suspension culture and plant regeneration potential by separating their cells and cell clusters into two sizes: larger and smaller than 3 mm. Larger clusters yielded plants for three genotypes GAF/Park, 88Ab3073, and Tibor. The smaller clusters only regenerated plants for GAF/Park and 88Ab3073. From one gram of callus used to initiate suspensions of GAF/Park and 88Ab3073, 119.9 and 18.8 plants, respectively, were regenerated. The plants regenerated for various genotypes from agar-solidified or suspension culture experiments had normal growth and seed set. This study confirms high and sustained regenerative capabilities of GAF/Park, a restricted genotype due to the weedy Avena fatua genetic background and identifies alternative genotypes, especially 88Ab3073 for future tissue culture and transformation studies.  相似文献   

15.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   

16.
The cereal cyst nematode (CCN) (Heterodera avenae Woll.) is an economically damaging pest of wheat in many of the worlds cereal growing areas. The development of CCN-resistant cultivars may be accelerated by the use of molecular markers. The Cre gene of the wheat line AUS 10894 confers resistance to CCN. Using a pair of near-isogenic lines (NILs) that should differ only in a small chromosome segment containing the Cre locus, we screened 58 group-2 probes and found two (Tag605 and CDO588) that detect polymorphism between the NILs. Nulli-tetrasomic and ditelosomic lines confirmed that the restriction fragment length polymorphism (RFLP) markers identified were derived from the long arm of wheat chromosome 2. Crosses between AUS 10894 and Spear and the NIL AP and its recurrent parent Prins were used to produce F2 populations that gave the expected 31 segregation ratio for the resistance gene. Linkage analysis identified two RFLP markers flanking the resistance gene. Xglk605 and Xcdo588 mapped 7.3 cM (LOD=6.0) and 8.4 cM (LOD=6.7), respectively, from the Cre locus.  相似文献   

17.
The objective of this study was to identify molecular markers linked to genes for resistance to powdery mildew (Pm) in wheat using a series of Chancellor near-isogenic-lines (NILs), each having one powdery mildew resistance gene. A total of 210 probes were screened for their ability to detect polymorphism between the NILs and the recurrent parent. One of these restriction fragment length polymorphism (RFLP) markers (Xwhs179) revealed polymorphism not only between the NILs for the Pm3 locus, but also among NILs possessing different alleles of the Pm3 locus. The location of the marker Xwhs179 was confirmed to be on homoeologous chromosome group 1 with the help of nullitetrasomic wheat lines. The linkage relationship between this probe and the Pm3 locus was estimated with double haploid lines derived from a cross between wheat cvs Club and Chul (Pm3b). The genetic distance was determined to be 3.3±1.9 cM.  相似文献   

18.
A progeny consisting of 52 anther-derived doubled haploid barley lines from a F1 between the winter cultivars Igri (susceptible) and Triton (resistant) was tested for resistance to Rhynchosporium secalis. A dominant gene was detected and tagged by a series of cosegregating RFLP markers located in the proximal portion of the long arm of chromosome 3, close to the centromere. One of the cosegregating RFLP markers, cMWG680, was converted into a codominant sequence tagged site marker. Polymerase chain reaction analysis with this marker of a series of accessions carrying known resistance genes provided evidence that scald resistance in cv Triton is due to the presence of the Rh gene.  相似文献   

19.
A progeny of 77 hybrids issued from a cross between two heterozygous Prunus, peach [P. persica (L.) Batsch] (variety Summergrand) and a related species, P. davidiana (clone 1908), was analysed for powdery mildew resistance in five independent experiments. This population was also analysed for its genotype with isoenzyme and RAPD markers in order to map the genes responsible for resistance. A genetic linkage map was generated for each parent. The Summergrand linkage map is composed of only four linkage groups including 15 RAPD markers and covering 83.1 centiMorgans (cM) of the peach nuclear genome, whereas the P. davidiana linkage map contains 84 RAPD markers and one isoenzyme assigned to ten linkage groups and covering 536 cM. Significant associations between molecular markers and powdery mildew resistance were found in each parent. For P. davidiana, one major QTL with a very strong effect and five other QTLs with minor effects were located in different linkage groups. For Summergrand, three QTLs for powdery mildew resistance, with minor effects, were also detected. Consequently, evidence is given here that the powdery mildew resistance of P. davidiana clone 1908 and P. persica variety Summergrand is not a monogenic character but is controlled by at least one major gene and several minor genes.  相似文献   

20.
Molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.) were identified using near-isogenic lines and bulked segregant analysis. Six markers for Pc48, the closest being 6 cM away, were found in a Pendek-39 × Pendek-48 (Pendek3948) population, but none was found in a Pendek-48 × Pendek-38 (Pendek4838) population. Three markers for Pc39 were found in the Pendek3948 population, one of which cosegregated with the gene. This same marker was found to be 6 cM away from the gene in an OT328 × Dumont (OT328Du) population. Nine markers for Pc38 were found in the Pendek4838 population, eight of which are within 2 cM of the gene. One other marker for Pc38 was found in the OT328Du population; however, comparative mapping suggests that the Pc38 region in OT328Du is in a different location than that in Pendek4838. A number of markers unlinked to the genes under study formed linkage groups in both the Pendek3948 and Pendek4838 populations. Four of these show homology or homoeology to each other and to the Pc39 region in Pendek3948. Two RFLP clones closely linked to Pc38 code for a putative leucine-rich repeat transmembrane protein kinase and a cre3 resistance gene analogue. This study provides information to support molecular breeding in oat, and contributes to ongoing research into genomic regions associated with fungal pathogen resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号