首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Basic fibroblast growth factor (bFGF), but not acidic fibroblast growth factor (aFGF), was found to be mitogenic for cultured mouse keratinocytes. A six-to-nine fold increase in 3H-thymidine (3H-dT) incorporation into the acid insoluble pool and a similar increase of the labeling index can be measured when bFGF, at a concentration between 1 and 10 ng/ml, is added to keratinocytes arrested in serum-free and growth factor-free medium with a Ca++-concentration below 0.1 mM. The half-maximal response is observed between 0.2 and 0.7 ng/ml. In the same culture system, insulin-like growth factor I/somatomedin C (IGF-I) and insulin act as mitogens. IGF-I shows half-maximal stimulation with 2-3 ng/ml, insulin with 100-500 ng/ml. Basic FGF, IGF-I and insulin can be classified as strong stimulators of DNA synthesis in mouse keratinocytes. In this regard they are comparable to epidermal growth factor, which shows a half-maximal stimulation at a concentration between 1.5-2 ng/ml. These results show that in addition to mesenchymal cells, FGF is a growth factor not only for neuroectodermal cells, but ectodermal cells in general. They further support the idea that the growth promoting effect of insulin on keratinocytes may be mediated by the IGF-I receptor.  相似文献   

4.
Essential factors required for growing oocytes derived from bovine early antral follicles and their mechanisms of action are poorly understood. Fibroblast growth factor 7 (FGF7) is a member of the heparin-binding FGF family with a distinctive pattern of target-cell specificity. The effect of FGF7 on the stimulation of oocyte growth in a culture of cumulus-oocyte complexes with granulosa cells (COCGs, oocyte diameter; 90-100 microm) was investigated. The oocyte diameter of COCGs was increased significantly in the FGF7-containing medium (10 ng/ml; 117.2 +/- 3.2 microm, 50 ng/ml; 116.5 +/- 3.5 microm) compared to the control (0 ng/ml; 110.5 +/- 2.8 microm) after 16 days. However, there was no stimulatory effect of FGF7 on the proliferation of cumulus-granulosa cells. The FGF7 receptor, fibroblast growth factor receptor 2IIIb (FGFR2IIIb), was detected in cumulus-granulosa cells from COCGs. Messenger RNA expression of FGFR2IIIb was induced to cumulus-granulosa cells by FGF7. The mRNA expression levels of KIT ligand (KITLG), KIT (KIT), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15) in the cultured COCGs were determined in FGF7-treated (10 ng/ml) cultures using real time RT-PCR analysis. The levels of KITLG and KIT, but not GDF9 and BMP15 mRNA expression were stimulated by FGF7. Furthermore, neutralizing antibody for KIT attenuated the stimulatory action of FGF7 on the oocyte growth. These results strongly suggest that FGF7 may be an important regulator for oocyte growth and its action is mediated via the KIT/KITLG signaling pathway.  相似文献   

5.
The possible role of peptide growth factors in mammalian intrauterine cell growth has been investigated using primary cultures of undifferentiated mesenchymal cells from 11-day mouse embryo limb buds. When grown as monolayer cultures, proliferation is greatly favored by high cell densities. In medium containing 0.2% serum, purified epidermal growth factor (EGF), fibroblast growth factor (FGF), multiplication stimulating activity (MSA), insulin, and somatomedin-C (Sm-C) do not increase cell growth, but a 30-40,000 molecular weight component of mouse fetal liver conditioned medium is stimulatory. On the other hand, when limb bud cells are grown as high density or micromass cultures, a method which better approximates in vivo growth conditions, all of the purified growth factors tested stimulate cell growth significantly. These growth factors have additive effects when used in combination, the best stimulation being observed with liver medium (10% v/v), EGF (10 ng/ml), FGF (200 ng/ml), and either insulin (1 microgram/ml) or Sm-C (20 ng/ml). We conclude that the response of limb bud cells to growth stimulation is influenced by the manner in which the cells are cultured and that at least four different growth factors are required for optimal in vitro proliferation. One of these, the active component of liver medium, appears to be a previously uncharacterized growth factor.  相似文献   

6.
Hemopoiesis in spleen and bone marrow cultures   总被引:1,自引:0,他引:1  
Four endothelial cell clones derived from adult bovine aorta were examined with respect to their proliferative characteristics in vitro. Three of these clones, derived in the absence of fibroblast growth factor (FGF), displayed variable basal proliferative rates. One of these non-FGF derived clones grew at a maximal rate which could not be further enhanced with FGF. The other two clones grew at a suboptimal rate which was stimulated by low doses of FGF (10-50 ng/ml) and inhibited by higher doses (100-250 ng/ml). The fourth clone, derived in the presence of FGF, was stimulated by FGF in a dose-dependent manner (10-250 ng/ml) and was not growth inhibited at high FGF concentrations (250-1,000 ng/ml). Growth of all four clones on extracellular matrix (ECM) derived from bovine aortic smooth muscle (BASM) cells was optimal in the absence of FGF. ECM-coated dishes also significantly increased the sensitivity of all clones by at least fivefold to mitogenic stimulation by serum. The proliferative lifespans of the clones ranged between 60 and 120 generations with the most actively proliferating clones attaining the greatest lifespan. Continuous subculture of two of the endothelial clones in the presence of FGF or on ECM-coated dishes did not induce a dependence of the cells on either factor for subsequent growth in its absence. The results indicate that aortic endothelial cells display considerable clonal variability in ther basal proliferative rate and in their response to FGF. This clonal variability is not observed when the cells are maintained on ECM-coated dishes derived from vascular smooth muscle cells.  相似文献   

7.
The effects of fibroblast growth factor (FGF) on hamster dermal fibroblasts and chondrogenic cells, both of mesodermal origin, were compared with special reference to growth stimulation and morphological changes in monolayer cultures, and colony formation in semisolid medium. FGF (10 to 200 ng/ml) caused appreciable cell proliferation of dermal fibroblasts but not of chondrogenic cells, while FGF (50-200 ng/ml) caused very marked dose-dependent morphological changes in monolayer cultures and colony formation in semisolid medium of both fibroblasts and chondrogenic cells. It is suggested that FGF is the same type of growth factor as the transforming growth factor(s) because, like the latter, it induces drastic morphological changes of normal mesodermal cells in monolayer cultures and their colony formation in semisolid medium.  相似文献   

8.
Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.  相似文献   

9.
10.
Mdx mice uniquely recover from degenerative dystrophic lesions by an intense myoproliferative (regenerative) response. To investigate a potential role of endogenous basic fibroblast growth factor (bFGF) in injury-repair processes, we investigated its localization in several striated muscles of mdx and control mice using immunofluorescence labeling with specific antibodies. Basic FGF was localized consistently to the myofiber periphery and nuclei of intact myofibers, as well as in single, dystrophin-positive cells in close association with the myofibers (potential myosatellite cells). In mdx mice, actively degenerating skeletal or cardiac muscle fibers presented intense cytoplasmic anti-bFGF staining prior to mononuclear infiltration. Small regenerating fibers in mdx skeletal muscle exhibited greater bFGF accumulation than adjacent larger myofibers. Strong nuclear anti-bFGF immunolabeling was frequently observed in mdx cardiac myocytes at the borders of necrotic regions. In agreement with differences in intensity of immunolabeling, extracts from slow-twitch muscles contained higher levels of bFGF compared to those from fast-twitch muscles, in both control and mdx mice. In addition, bFGF levels were consistently higher in extracts from all mdx tissues compared to those derived from their control counterparts. Our data suggest that bFGF participates in the degenerative and regenerative responses of striated muscle to dystrophic injury and also indicate a potential involvement of this factor with the physiology of different striated muscles.  相似文献   

11.
12.
13.
MyoD-deficient mice are without obvious deleterious muscle phenotype during embryogenesis and fetal development, and adults in the laboratory have grossly normal skeletal muscle and life span. However, a previous study showed that in the context of muscle degeneration on a mdx (dystrophin null) genetic background, animals lacking MyoD have a greatly intensified disease phenotype leading to lethality not otherwise seen in mdx mice. Here we have examined MyoD(-/-) adult muscle fibers and their associated satellite cells in single myofiber cultures and describe major phenotypic differences found at the tissue, cellular, and molecular levels. The steady-state number of satellite cells on freshly isolated MyoD(-/-) fibers was elevated and abnormal branched fiber morphologies were observed, the latter suggesting chronic muscle regeneration in vivo. Single-cell RNA coexpression analyses were performed for c-met, m-cadherin, and the four myogenic regulatory factors (MRFs.) Most mutant satellite cells entered the cell cycle and upregulated expression of myf5, both characteristic early steps in satellite cell maturation. However, they later failed to normally upregulate MRF4, displayed a major deficit in m-cadherin expression, and showed a significant diminution in myogenin-positive status compared with wildtype. MyoD(-/-) satellite cells formed unusual aggregate structures, failed to fuse efficiently, and showed greater than 90% reduction in differentiation efficiency relative to wildtype. A further survey of RNAs encoding regulators of growth and differentiation, cell cycle progression, and cell signaling revealed similar or identical expression profiles for most genes as well as several noteworthy differences. Among these, GDF8 and Msx1 were identified as potentially important regulators of the quiescent state whose expression profile differs between mutant and wildtype. Considered together, these data suggest that activated MyoD(-/-) satellite cells assume a phenotype that resembles in some ways a developmentally "stalled" cell compared to wildtype. However, the MyoD(-/-) cells are not merely developmentally immature, as they also display novel molecular and cellular characteristics that differ from any observed in wild-type muscle precursor counterparts of any stage.  相似文献   

14.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

15.
Effects of epidermal growth factor (EGF) on the development of mouse 2-cell embryos cultured in vitro were investigated. The addition of EGF at a concentration of 0.5 ng/ml enhanced the development of 2-cell embryos during 24 h of incubation. As expected, EGF stimulated the synthesis of DNA in the 2-cell embryos about 4-fold over the control. The growth-promoting effect of EGF seemed to be specific in that other growth factors, such as transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta (TGF-beta), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), nerve growth factor (NGF) and fibroblast growth factor (FGF) had no effect on the embryonal development. The addition of EGF also increased the rate of RNA synthesis in a dose-related manner between 0.1 and 50 ng/ml. However, protein synthesis was unaffected by EGF. These results raise the possibility that EGF may participate in the process of early embryogenesis in vivo.  相似文献   

16.
Satellite cells in skeletal muscle have been implicated in muscle growth processes and regeneration. However, very little is known about the regulation of their proliferation and differentiation. The effect of fibroblast growth factor (FGF) on the proliferation of myogenic cells from adult rat skeletal muscle, presumably satellite cells, has been examined, and FGF has been found to be a potent mitogen for these cells. The mitogenic properties of serum were also documented and studied in conjunction with FGF. Even under conditions of maximal stimulation by serum, the addition of FGF caused a substantial increase in proliferation of satellite cells. The additive nature of the FGF and serum-stimulatory activity suggests that FGF-like molecules are not the active agents in serum and that more than one pathway may be involved in stimulating satellite cell proliferation.  相似文献   

17.
18.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

19.
The effects of fibroblast growth factor (FGF) and nerve growth factor (NGF) on DNA synthesis and insulin secretion were studied in 4-5-day cultures of the isolated neonatal rat islets. FGF (0.1 ng/ml) stimulated significantly the incorporation of 3H-thymidine into DNA of the isolated islets, but failed to change either insulin content in the islets or the rate of insulin secretion. NGF (0.1-1000 ng/ml) did not affect the above parameters. The responses of the islets of Langerhans to increasing concentrations of glucose and isobutylmethylxanthine were not modified after prolonged exposure to NGF. The role of FGF and NGF in the regulation of proliferation and secretory process in pancreatic islet cells is discussed.  相似文献   

20.
Analysis of MM14 mouse myoblasts demonstrates that terminal differentiation is repressed by pure preparations of both acidic and basic fibroblast growth factor (FGF). Basic FGF is approximately 30-fold more potent than acidic FGF and it exhibits half maximal activity in clonal assays at 0.03 ng/ml (2 pM). FGF repression occurs only during the G1 phase of the cell cycle by a mechanism that appears to be independent of ongoing cell proliferation. When exponentially growing myoblasts are deprived of FGF, cells become postmitotic within 2-3 h, express muscle-specific proteins within 6-7 h, and commence fusion within 12-14 h. Although expression of these three terminal differentiation phenotypes occurs at different times, all are initiated by a single regulatory "commitment" event in G1. The entire population commits to terminal differentiation within 12.5 h of FGF removal as all cells complete the cell cycle and move into G1. Differentiation does not require a new round of DNA synthesis. Comparison of MM14 behavior with other myoblast types suggests a general model for skeletal muscle development in which specific growth factors serve the dual role of stimulating myoblast proliferation and directly repressing terminal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号