首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Competition experiments were carried out on the hydrolysis of different substrates by beta-hexosaminidase A isolated from human liver. The results show that ganglioside GM2 in the presence of the GM2 activator protein and a new synthetic substrate, 4-methylumbelliferyl-beta-N-acetylglucosaminide 6-sulfate, are hydrolyzed at the same active site on the alpha subunit of beta-hexosaminidase A, whereas 4-methylumbelliferyl-beta-N-acetylglucosaminide is degraded predominantly by a different active site on the beta-subunit. This finding provides for the first time a possible molecular basis for the observation that, in variant B1 of the GM2 gangliosidoses, beta-hexosaminidase A has lost its activity toward GM2 ganglioside and the sulfated artificial substrate while being still able to hydrolyze the unsulfated artificial substrate at a normal rate. Furthermore, the finding that the GM2 activator protein inhibits the degradation of the sulfated substrate by beta-hexosaminidases A and S indicates that the alpha subunit common to both isoenzymes might provide a binding site for the activator protein.  相似文献   

2.
We have prepared a series of oligosaccharides to assess the substrate specificity of exo sulfatase activity in cultured human skin fibroblasts toward N-acetylglucosamine-6-sulfate residues present in keratan sulfate (KS) and heparan sulfate (HS). Non-reducing end alpha-GlcNAc-6-SO4 residues (derived from HS) were desulfated by a specific sulfatase that when deficient leads to the accumulation of HS and the expression of mucopolysaccharidosis type IIID (Sanfilippo D). Under the in vitro conditions studied there are two pathways for the degradation of oligosaccharides containing non-reducing end beta-GlcNAc-6-SO4 residues (derived from KS). In one pathway beta-N-acetylglucosaminidase produces GlcNAc-6-SO4 which is then desulfated. In the other pathway the beta-GlcNAc-6-SO4 residue is desulfated and then cleaved by the action of an beta-N-acetylglucosaminidase activity. There was no detectable beta-N-acetylglucosaminidase activity in fibroblasts from a Tay-Sachs patient to produce GlcNAc-6-SO4 from beta-GlcNAc-6-SO4 residues in KS of oligosaccharides. There was approximately 10% of this normal beta-N-acetylglucosaminidase activity in fibroblasts from a Sandhoff patient, suggesting the A and S forms may be involved in this reaction. Desulfation of GlcNAc-6-SO4 residues in KS, HS and the monosaccharide GlcNAc-6-SO4 was considerably reduced or not detected in fibroblasts from a Sanfilippo D patient. As KS was not detected in the urine of a Sanfilippo D patient we propose that KS degradation in these patients proceeds by the action of a beta-N-acetylglucosaminidase activity to produce GlcNAc-6-SO4 which is not further degraded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

4.
The biochemical basis of a case of GM2 gangliosidosis in a Japanese Spaniel was studied. This dog had a massive accumulation of GM2 ganglioside in the brain. The beta-hexosaminidase activity in this affected dog brain was approximately 12 times higher than that of normal brain. However, the activity toward p-nitrophenyl-6-sulfo-2-acetamido-2-deoxyglucopyranoside was only four times higher in the affected brain than in normal brain. The GM2 activator preparation obtained from the normal dog brain could stimulate the hydrolysis of GM2 ganglioside by beta-hexosaminidase isolated from the affected dog. However, the corresponding activator fraction from the affected dog could not stimulate such a reaction. It was concluded that the biochemical basis of the GM2 gangliosidosis in this Japanese Spaniel was due to the attenuation in the stimulatory activity of GM2 activator. This case represents the first animal form similar to the activator deficiency (or defect) of Type AB GM2 gangliosidosis in humans.  相似文献   

5.
6.
S W Eber  M Gahr  W Schr?ter 《Blut》1985,51(2):109-115
Two new inheritable variants of glucose-6-phosphate dehydrogenase have been found in two unrelated German families. Patients with one variant (G6PD Iserlohn, also referred to as G6PD I) suffered from intermittent hemolytic crises caused by fava beans; patients with the other variant (G6PD Regensburg, G6PD II) disclosed chronic nonspherocytic hemolytic anemia aggravated by drug treatment. Due to their unusual biochemical characteristics, the new variants were designated G6PD Iserlohn and G6PD Regensburg. Both variants showed a reduction of enzyme activity to about 6% of the normal in erythrocytes, normal electrophoretic mobility, increased affinity for glucose-6-phosphate, a reduced affinity for NADP and a pH optimum in the neutral region (7.0 and 7.5). G6PD Iserlohn had a decreased affinity for the inhibitor NADPH; G6PD Regensburg had a normal inhibitor constant. Deamino NADP was utilized at an increased rate by G6PD Regensburg. G6PD Iserlohn was thermostable, G6PD Regensburg mildly instable. G6PD activity in leukocytes was normal in G6PD Iserlohn and reduced to the same degree as in erythrocytets in G6PD Regensburg. The cause of the decreased activity of G6PD Iserlohn appears to be in vivo instability; in G6PD Regensburg further mechanisms might include reduced specific activity or reduced synthesis of the variant enzyme.  相似文献   

7.
Summary p-Nitrophenyl-6-sulfo-2-acetamido-2-deoxy--d-glucopyranoside, which is known to be a specific substrate for human hexosaminidase A, has recently been used successfully for diagnosis of variants B and B1 of GM2-gangliosidosis (Fuchs et al. 1983; Kytzia et al. 1983; Li et al. 1983). However, it is hydrolyzed by hexosaminidase S as well and is therefore not suitable for detection of patients with variant 0, who reach the normal range of activity toward this substrats. Assay of ganglioside GM2 cleaving activity in fibroblast extracts in the presence of the natural GM2 activator protein reveals residual hexosaminidase A activities of less than 2% of normal controls in two infantile and up to 7.5% in two juvenile patients with variant 0.  相似文献   

8.
PACE4, furin and PC6 are Ca2+-dependent serine endoproteases that belong to the subtilisin-like proprotein convertase (SPC) family. Recent reports have supported the involvement of these enzymes in processing of growth/differentiation factors, viral replication, activation of bacterial toxins and tumorigenesis, indicating that these enzymes are a fascinating target for therapeutic agents. In this work, we evaluated the sensitivity and selectivity of three rat alpha1-antitrypsin variants which contained RVPR352, AVRR352 and RVRR352, respectively, within their reactive site loop using both inhibition of enzyme activity toward a fluorogenic substrate in vitro and formation of a SDS-stable protease/inhibitor complex ex vivo. The RVPR variant showed relatively broad selectivity, whereas the AVRR and RVRR variants were more selective than the RVPR variant. The AVRR variant inhibited furin and PC6 but not PACE4. This selectivity was further confirmed by complex formation and inhibition of pro-complement C3 processing. On the other hand, although the RVRR variant inhibited both PACE4 and furin effectively, it needed a 600-fold higher concentration than the RVPR variant to inhibit PC6 in vitro. These inhibitors will be useful tools in helping us to understand the roles of PACE4, furin and PC6.  相似文献   

9.
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isoenzymes, hexosaminidases A (alpha beta) and B (beta beta). The alpha- and beta-subunits are encoded by the HEXA and HEXB genes, respectively. Extensive homology in both the gene structures and deduced primary sequences demonstrate their common evolutionary origin. Defects in the alpha- or beta-subunits lead to Tay-Sachs of Sandhoff disease, respectively. The B1 variant of Tay-Sachs disease is characterized by an unusual phenotype. Patient samples contain both isoenzymes; however, hexosaminidase A lacks activity toward alpha-specific substrates. In a previous report, we analyzed the biochemical consequences of an Arg178----His substitution in the alpha-subunit, causing the B1 phenotype, by in vitro mutagenesis of the homologous codon for Arg211 in the beta-subunit to produce His. We found that the substitution did not affect dimer formation or cellular targeting but caused a near total loss of activity toward a common alpha- and/or beta-substrate. Additional effects were also noted that suggested a perturbation had occurred to the protein's secondary structure. In this report, we investigate further the role of Arg in the catalysis of hexosaminidase substrates. The introduction of more or less conservative amino acid substitutions at the beta-Arg211 site were evaluated in terms of their effects on the protein's catalytic activity and susceptibility to the arginine-specific reagents and on its stability and rate of maturation in the cell's lysosome. These data demonstrate that the changes in the in vivo stability and rate of maturation, previously noted with the Arg211----His substitution, are independent of the loss in enzymatic activity. Whereas treatment of purified normal human placental hexosaminidases A and B with arginine-specific modifying reagents produced a time-dependent loss of enzymatic activity toward both alpha-specific and common substrates, these reagents failed to significantly decrease the residual activities of mutant proteins lacking Arg at position 211. Kinetic analysis of the residual enzyme activity from our most conservative construct, Arg211----Lys, determined an apparent Vmax approximately 400-fold reduced from that of the wild type enzyme but detected no change in the apparent Km. Additionally, the pH optimum of this mutant enzyme was narrower and slightly more basic than that of the normal enzyme. Thus, Arg211 in the beta-subunit and, by extrapolation, the Arg178 in the alpha-subunit of beta-hexosaminidase are "active" residues, i.e. part of the catalytic sites, but do not participate in substrate binding.  相似文献   

10.
Chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate and keratan sulphate were N-deacetylated by treatment with hydrazine and then cleaved with HNO2 at pH 4.0, and the resulting products were reduced with NaB3H4. This reaction sequence cleaved the glycosaminoglycans at their N-acetyl-D-glucosamine or N-acetyl-D-galactosamine residues, which were converted into 3H-labelled 2,5-anhydro-D-mannitol (AManR) or 2,5-anhydro-D-talitol (ATalR) residues respectively. The end-labelled disaccharides, composed of D-glucuronic acid (GlcA), L-iduronic acid (IdoA) or D-galactose (Gal) and one of the anhydrohexitols, were identified as follows: both chondroitin 4-sulphate and chondroitin 6-sulphate gave GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4), IdoA----ATalR (4-SO4) and GlcA(2-SO4)----ATalR(6-SO4); dermatan sulphate gave IdoA----ATalR(4-SO4), GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4)----IdoA(2-SO4)ATalR(4-SO4) and IdoA----ATalR (4,6-diSO4); keratan sulphate gave Gal(6-SO4)----AManR(6-SO4), Gal----AManR(6-SO4), Gal(6-SO4)----AManR and Gal----AManR. Several additional disaccharides were generated by treatment of the uronic acid-containing disaccharides with hydrazine to epimerize their uronic acid residues at C-5. A number of these disaccharides were found to be substrates for lysosomal sulphatases and glycuronidases. Methods were developed for the separation of all of the disaccharide products by h.p.l.c. The rate of N-deacetylation of chondroitin 4-sulphate by hydrazinolysis was significantly lower than the rate of N-deacetylation of chondroitin 6-sulphate or chondroitin. Dermatan sulphate was N-deacetylated at an intermediate rate. The relative amounts of disaccharides obtained from chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate under optimum hydrazinolysis/deamination conditions were comparable with the amounts of the corresponding products released from the polymers by chondroitinase treatment.  相似文献   

11.
A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R., Angulo, J., Nieto, P.M., and Martin-Lomas. M. (2002) The activation of fibroblast growth factors by heparin: synthesis and structural study of rationally modified heparin-like oligosaccharides. Can. J. Chem,. 80, 917-936; Lucas, R., Angulo, J., Nieto, P.M., and Martin-Lomas, M. (2003) Synthesis and structural studies of two new heparin-like hexasaccharides. Org. Biomol. Chem., 1, 2253-2266) and biological data (Angulo, J., Ojeda, R., de Paz, J.L., Lucas, R., Nieto, P.M., Lozano, R.M., Redondo-Horcajo, M., Giménez-Gallego, G., and Martín-Lomas, M. (2004) The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulphation pattern on the biological activity of FGF-1. Chembiochem, 5, 55-61). Fast internal motions observed for the less sulphated compound 2, as compared with 1, may be related to their different behavior in stimulating FGF1-induced mitogenic activity.  相似文献   

12.
Fragmentation of the heparan sulfate chains from bovine glomerular basement membrane (GBM) by hydrazine/nitrous acid treatment followed by NaB3H4-reduction yielded a mixture of six sulfated disaccharides containing D-glucuronic (GlcUA) or L-iduronic acid (IdUA) and terminating in 2,5-anhydro[3H]mannitol (AnManH2), in addition to the nonsulfated component GlcUA beta 1----4AnManH2. Among these products two novel disaccharide units were identified as IdUA alpha 1----4AnManH2(3-SO4) and IdUA(2-SO4)alpha 1----4AnManH2(3-SO4); these accounted for 22% of the total sulfated species indicating that there are 2-3 residues of 3-O-sulfated glucosamine/heparan sulfate chain. The disulfated disaccharide was shown through its release by direct nitrous acid treatment to be situated in a GlcNSO3-IdUA(2-SO4)-GlcNSO3(3-SO4) sequence which is distinct from that in which 3-O-sulfated glucosamine is located in the antithrombin-binding region of heparins. Analyses of heparan sulfate from lens capsule, a nonvascular basement membrane, indicated the absence of sequences containing 3-O-sulfated glucosamine, although otherwise the sulfated disaccharides produced by hydrazine/nitrous acid/Na-B3H4 treatment (GlcUA beta 1----4AnManH2(6-SO4), IdUA alpha 1----4AnManH2(6-SO4), IdUA(2-SO4)alpha 1----4AnManH2 and IdUA(2-SO4)alpha 1----4AnManH2(6-SO4] were the same as from GBM. Examination of the GBM heparan sulfate domains after nitrous acid treatment indicated that the O- as well as N-sulfate groups are clustered in an iduronic acid-rich 10-disaccharide peripheral segment, while the internal region (approximately 20 disaccharides) is composed primarily of repeating GlcUA beta 1----4GlcNAc units. The localization of chain diversity to the outer region may facilitate interactions of the heparan sulfate with other macromolecular components.  相似文献   

13.
A sensitive assay was developed to assess the ability of extracts from cultured fibroblasts to catabolize ganglioside GM2, in the presence of the natural activator protein but without detergents. This method, which permitted the reliable determination of residual activities as low as 0.1% of normal controls, was then used to measure ganglioside GM2 hydrolase activities in fibroblasts from several hexosaminidase variants. The residual activities thus determined correlated well with the clinical status of the respective proband: infantile Tay-Sachs (0.1% of normal controls), late-infantile (0.5%), and adult GM2 gangliosidoses (2%-4%) and healthy probands with "low hexosaminidase" (11% and 20%). In contrast, beta-hexosaminidase A levels as measured with the synthetic substrate 4-MU-GlcNAc could not be relied on for diagnostic purposes (the late-infantile patient studied retained 80% of the activity of controls).  相似文献   

14.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant with severe erythrocytic G6PD deficiency and a unique pH optimum is described in a young patient with chronic nonspherocytic hemolytic anemia (CNSHA) and familial amyloidotic polyneuropathy (FAP). Chronic hemolysis was present in the absence of infections, oxidant drugs or ingestion of faba beans. Residual enzyme activity was about 2.6% and 63% of normal activity in erythrocytes and leucocytes, respectively. A molecular study using standard methods showed G6PD in the patient to have normal electrophoretic mobility (at pH 7.0, 8.0 and 8.8), normal apparent affinity for substrates (Km, G6P and NADP) and a slightly abnormal utilization of substrate analogues (decreased deamino-NADP and increased 2-deoxyglucose-6-phosphate utilization). Heat stability was found to be markedly decreased (8% of residual activity after 20 min of incubation at 46°C) and a particular characteristic of this enzyme was a biphasic pH curve with a greatly increased activity at low pH. Although molecular characteristics of this variant closely resemble those of G6PD Bangkok and G6PD Duarte, it can be distinguished from these and all other previously reported variants by virtue of its unusual pH curve. Therefore the present variant has been designated G6PD Clinic to distinguish it from other G6PD variants previously described.  相似文献   

15.
Three new electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been partially purified and compared with the normal isozyme with respect to stability, kinetics, and immunological properties. TPI 2HR1, an anodally migrating variant, was less stable than normal in guanidine denaturation and thermodenaturation tests, although it exhibited normal kinetic properties. The level of enzyme activity in erythrocytes from the proband with the phenotype TPI 1-2HR1 was about 60% of the normal mean. The variant allozyme TPI 2NG1, an anodally migrating allozyme associated with normal activity, was very thermolabile at 55 and 57°C. It was also much more labile than normal in stability tests in buffers at pH 5 and pH 10, although it exhibited normal kinetic and immunological properties. TPI 4NG1, a cathodally migrating variant associated with normal activity and normal kinetic as well as immunological properties, was more stable than normal in pH 5 buffer. Family studies demonstrated that the unique characteristics of these variants are genetically transmitted. In two-dimensional electrophoresis of purified isozymes the variant subunits were separated from the normal in the pI axis. However, there is no difference between the variants and the normal in the molecular weight axis, suggesting that the variants result from single amino acid substitutions.  相似文献   

16.
Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aeruginosa strain (ATCC 39018) with rat alveolar macrophages in the presence or absence of insect cell-expressed human SP-A variants. We used two trios, each consisting of SP-A1, SP-A2, and their coexpressed SP-A1/SP-A2 variants. We tested the 6A(2) and 6A(4) alleles (for SP-A1), the 1A(0) and 1A alleles (for SP-A2), and their respective coexpressed SP-A1/SP-A2 gene products. After incubation of alveolar macrophages with P. aeruginosa in the presence of the SP-A variants at 37 degrees C for 1 h, the cell association of bacteria was assessed by light microscopy analysis. We found 1) depending on SP-A concentration and variant, SP-A2 variants significantly increased the cell association more than the SP-A1 variants (the phagocytic index for SP-A1 was approximately 52-95% of the SP-A2 activity); 2) coexpressed variants at certain concentrations were more active than single gene products; and 3) the phagocytic index for SP-A variants was approximately 18-41% of the human SP-A from bronchoalveolar lavage. We conclude that human SP-A variants in vitro enhance association of P. aeruginosa with rat alveolar macrophages differentially and in a concentration-dependent manner, with SP-A2 variants having a higher activity compared with SP-A1 variants.  相似文献   

17.
18.
Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function.  相似文献   

19.
Late log cultures of chick embryo vertebral chondrocytes in Dulbecco's Modified Eagle's Medium with 10% fetal calf serum consume D-glucose from the culture medium at a rate of approximately 0.40 mumol per h per 10(6) cells. When the D-glucose concentration in the medium drops below 1 mumol per ml the glycogen stores are rapidly exhausted, and cell growth ceases. 35SO4(2)- is incorporated into chondroitin-6-SO4 and chondroitin-4-SO4 at linear rates of 1.2 and 0.4 nmol per h per 10(6) cells, respectively, until the D-glucose level in the medium drops below 1 mumol per ml, but there is always a slight lag in the initial appearance of chondroitin-4-SO4. Throughout the period of 35SO4 2- labeling, the amount of chondroitin-6-SO4 that is recovered in the cells exceeds the amount that is recovered in the medium, but the opposite is true for chondroitin-4-SO4. However, when cells prelabeled with 35SO4(2-) are then transferred to a label-free medium, the secretion of chondroitin sulfates proceeds at much slower rates, and the kinetics of chondroitin-6-SO4 and chondroitin-4-SO4 secretion are very similar. In this chase experiment the chondroitin sulfates are recovered quantitatively after a 24-h incubation period, indicating that these embryonic chondrocytes do not degrade the chondroitin sulfates under these culture conditions. The rate of incorporation of counts from D-[14C]glucosamine into mucopolysaccharides and glycoproteins increase with time. This nonlinear rate results from a progressive increase in the specific activity of the UDP-N-acetyl-D-[14C]hexosamine pool as the D-glucose in the culture medium is depleted. A linear relationship is demonstrated between the logarithm of the 14C counts per min per nmol of UDP-N-acetylhexosamine and the logarithm of the concentration of D-glucose in the culture medium over a range of 1 to 20 mumol of D-glucose per ml. The relative rates of appearance of counts from 35SO4(2-) and D-[14]glucosamine in chondroitin 4-SO4 and chondroitin-6-SO4 are used to calculate the specific activity of the UDP-N-acetyl-D-[14C]hexosamine pool at each stage in the labeling period. The resulting values are then used to calculate the rates of synthesis of the nonsulfated polymers, namely, chondroitin, hyaluronic acid, and glycoprotein.  相似文献   

20.
The alpha-1-antitrypsin (A1AT) gene is highly polymorphic, with more than 100 genetic variants identified of which some can affect A1AT protein concentration and/or function and lead to pulmonary and/or liver disease. This study reports on the characterization of a p.G320R variant found in two patients, one with emphysema and the other with lung cancer. This variant results from a single base-pair substitution in exon 4 of the A1AT gene, and has been characterized as P by isoelectric focusing. Functional evaluation of the A1AT p.G320R variant was through comparing specific trypsin inhibitory activity in two patients with pulmonary disorders, carriers of the p.G320R variant, and 19 healthy individuals, carriers of normal A1AT M variants. Results showed that specific trypsin inhibitory activity was lower in both emphysema (2.45 mU/g) and lung cancer (2.07 mU/g) patients than in carriers of the normal variants (range 2.51-3.71 mU/g). This rare A1AT variant is associated with reduced functional activity of A1AT protein. Considering that it was found in patients with severe pulmonary disorders, this variant could be of clinical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号