首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

2.
The viperine snake (Natrix maura) is an important agent of decline of the threatened midwife toad (Alytes muletensis) of Mallorca. However, there is a paucity of biological data to support the notion that the viperine snake is an introduced species to the island. Here we compare mitochondrial cytochrome b gene sequences and genomic ISSR-PCR fingerprints from Mallorcan and mainland European viperine snakes. Identical or nearly identical haplotypes and very similar ISSR-PCR profiles provide strong evidence that N. maura arrived only recently to Mallorca. There is no indication of a recent natural colonization of the island by transmarine dispersal. The data therefore support historical information that N. maura was introduced to Mallorca by human agency comparatively recently, and that management measures to reduce the impact of the snake on toad populations are justified.  相似文献   

3.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   

4.
Darwinian theory predicts that organisms will display traits that benefit themselves rather than other individuals; exceptions to this rule usually are explicable by kin selection. Our studies on an insular population of venomous snakes in north-eastern China reveal a different situation. Only one species of snake (Gloydius shedaoensis, Viperidae) occurs on the island of Shedao, and displays altruism between size (age) classes. First, small snakes frequently kill prey items larger than they can swallow themselves. This behaviour enhances rates of feeding of larger conspecifics, which scavenge the birds' carcasses. Second, large snakes kill raptorial birds (sparrowhawks Accipiter nisus) that pose little or no threat to themselves. This behaviour reduces predation risk for smaller snakes. These effects are presumably accidental consequences of the high venom toxicity of the pit-vipers, which enable them to kill inedible prey and non-threatening predators at little cost. Nonetheless, this accidental altruism may have significant ecological consequences. For example, these behaviours may contribute to the remarkably high population densities of snakes on Shedao.  相似文献   

5.
Gunzburger MS  Travis J 《Oecologia》2004,140(3):422-429
The effect of a predator on the abundance of a prey species depends upon the predators abundance and its ability to capture that prey. The objectives of this research were to evaluate the community structure of predators of green treefrog (Hyla cinerea) tadpoles across habitat types and evaluate the effectiveness of individual predators on H. cinerea tadpoles. Correspondence and cluster analyses of predator frequencies across 23 aquatic habitats indicated that the majority of variance in predator communities was due to a division between permanent and temporary habitats. Experimental work demonstrated that survival of the smallest H. cinerea tadpoles was significantly lower than survival of medium and large tadpoles with the most effective predators, indicating that H. cinerea tadpoles attain a refuge from predation at larger body sizes. We combined the effectiveness of predators in experiments with the abundance of each predator species from the predator community survey to demonstrate that predation pressure on H. cinerea tadpoles is higher in temporary ponds. This pattern may explain in part why this species generally breeds successfully only in permanent habitats. It also confirms that discussions about an increasing gradient of predation pressure from temporary to permanent aquatic habitats should be restricted to individual prey species for which such a gradient has been demonstrated.  相似文献   

6.
Yurewicz KL 《Oecologia》2004,138(1):102-111
Behavioral and morphological traits often influence a key trade-off between resource acquisition and vulnerability to predation, and understanding trait differences between species can provide critical insight into their interactions with other species and their distributions. Such an approach should enhance our understanding of the criteria for coexistence between species that can interact through both competition and predation (i.e. intraguild predators and prey). I conducted a common garden experiment that revealed strong differences between three guild members (larval salamanders Ambystoma laterale, A. maculatum, and A. tigrinum) in behavior, morphology, and growth in the presence and absence of a shared top predator (the larval dragonfly Anax longipes). All three species also reduced their activity and modified their tail fin depth, tail muscle length, and body length in response to non-lethal Anax. Species that act as intraguild predators were more active and could grow faster than their intraguild prey species, but they also suffered higher mortality in laboratory predation trials with Anax. I also used survey data from natural communities to compare the distribution of Ambystoma species between ponds differing in abiotic characteristics and predatory invertebrate assemblages. An intraguild prey species (A. maculatum) was found more reliably, occurred at higher densities, and was more likely to persist late into the larval period in ponds with more diverse invertebrate predator assemblages. Taken together, these results indicate that top predators such as Anax may play an important role in influencing intraguild interactions among Ambystoma and ultimately their local distribution patterns.  相似文献   

7.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

8.
We investigated the role of constitutive morphology and previous experience in predator avoidance in two anuran species associated with different larval habitats. In Rana temporaria, deeper tails and larger body size conferred selective advantage against dragonfly predation. Previous experience with predators had a positive influence on the survival of R. temporaria tadpoles equivalent to predator selection. By contrast, survival in Bufo bufo seems unrelated to tail shape or experience. This suggests that B. bufo lacks constitutive morphological defenses against insect predators, and that morphological and behavioral defenses could result more effective than chemical deterrents for these insect predators. A key novelty of this study is the observation that Rana tadpoles having prior experience with predators have an enhanced success in further encounters, and this occurs before the morphological induced defense has been established. This induced modification for R. temporaria, and its lack of for B. bufo, may be an important determinant of larval survival.  相似文献   

9.
LaFiandra EM  Babbitt KJ 《Oecologia》2004,138(3):350-359
Predator-induced defenses can result from non-contact cues associated with the presence of a feeding predator; however, the nature of the predator cue has not been determined. We tested the role of two non-contact cues, metabolites of digestion of conspecific prey released by the predator and alarm pheromones released by attacked conspecific prey, in the development of inducible defenses by exposing pinewoods tree frog (Hyla femoralis) tadpoles to non-lethal dragonfly (Anax junius) larvae fed either inside experimental bins or removed from the bins for feeding to eliminate alarm pheromones. The costs associated with the development of the induced morphology were also investigated by providing the tadpoles with two food levels intended to provide adequate or growth limiting resources. The generalized morphological response of H. femoralis tadpoles to predators included the development of bodies and tails that were both deeper and shorter, smaller overall body size, and increased orange tail fin coloration and black tail outline. Metabolites of digestion were sufficient to initiate development of inducible defenses; however, the combination of metabolites and alarm cue resulted in a greater response. Furthermore, growth and development were slowed in tadpoles that expressed the induced morphology; however, this growth cost was insufficient to preclude the development of the induced morphology when food resources were low. These results indicate that two aspects of the indirect predator cue work together to trigger a morphological anti-predator response.  相似文献   

10.
Summary Populations of water snakes (Nerodia sipedon insularum) on islands in western Lake Erie are variable in colour pattern, consisting of unbanded, intermediate, and banded morphs. In contrast, mainland populations (N. s. sipedon) consist solely of banded morphs. Previous investigators hypothesized that natural selection favoured unbanded morphs on exposed island shorelines and banded morphs in overgrown mainland habitats and that gene flow from mainland populations was responsible for the persistence of banded morphs on islands. To clarify the potential role of natural selection, I quantified relative crypsis among morphs and age classes of water snakes by comparing the size of patches making up their colour patterns with the size of patches in island and mainland backgrounds. This analysis reveals that if unbanded morphs are more cryptic than intermediate and banded morphs on islands, it is only in the young-of-the-year age class. For older snakes on islands and for all snakes on the mainland, unbanded morphs are consistently less cryptic than intermediate and banded morphs. Given these results, the net direction of selection in island populations should depend on the intensity of predation on different age classes of snakes. Overall, selection may favour unbanded morphs (e.g. if predation occurs primarily on young-of-the-year), intermediate and banded morphs (e.g. if predation occurs primarily on older snakes), or be weak or absent (e.g. certain combinations of predation on young-of-the-year and older snakes). Using estimates of relative crypsis to guide reanalysis of morph frequency data, I find support for the hypothesis that unbanded morphs are favoured by natural selection in island populations.  相似文献   

11.
The diet of the viperine snake was compared with food availability in the Ebro Delta, a wetland largely occupied by rice fields, in 1990 and 1991. Snake selection of prey type and size was studied seasonally and by snake group: males, females and immature snakes. Overall, feeding activity (percentage of individuals with prey and number of prey per stomach) increased with food availability. Diet analysis showed that viperine snakes mainly foraged on the green frog Rana perezi (adults and tadpoles) and the carp Cyprinus earpio. Conversely, viperine snakes rejected the mosquito fish Gambusia holbroki which is the most abundant species in autumn, when Natrix maura has a low feeding activity. Statistical comparisons between viperine snake diet and prey availability showed that males selected small carp, immature snakes selected tadpoles and, in spring, females selected frogs. The selection of small carp by males may reflect a sexual divergence of trophic niche related to sexual size dimorphism, as females are larger than males. As tadpoles are presumably easier to catch than fish, tadpole selection by immature individuals may reflect variance in capture abilities. In spring, the selection of frogs by females overlapped with vitellogenesis, suggesting that females compensate for the cost of reproduction by selecting green frogs, which have a greater biomass and higher energy content than fish. Carps eaten in spring were smaller than in summer. Moreover, in summer viperine snakes selected smaller carp than the available mean size. This divergent tendency between carp size selection and carp size availability reveals how seasonal diet shifts in prey size selection may be a response to an increase in prey size.  相似文献   

12.
Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well. Received: 17 April 1996 / Accepted: 18 September 1996  相似文献   

13.
Learning to avoid toxic prey items may aid native predators to survive the invasion of highly toxic species, such as cane toads Bufo marinus in tropical Australia. If the predators’ initial aversion is generalized, native prey that resemble the toxic invader may receive a benefit through accidental mimicry. What ecological factors influence the acquisition of learned avoidance (and hence, the impact of invasion on both predators and native prey)? We conducted laboratory experiments to evaluate how the relative abundance of toad tadpoles compared to palatable native tadpoles (Litoria caerulea and L. rubella) affected the ability of native aquatic predators to discriminate between these two prey types. Both fish (northern trout gudgeon, Mogurnda mogurnda) and frogs (Dahl's aquatic frog, Litoria dahlii) learned to discriminate between toads and frogs within an eight‐day period. Higher abundance of toad tadpoles relative to frog tadpoles enhanced rates of predator learning, and thus reduced predation on toads and increased predation on native tadpoles. In the field, spatial and temporal variation in the relative abundance of cane toads compared to native frogs may influence the rates at which these novel toxic items are deleted from predator diets, and the duration of predator protection afforded to natives that resemble the invader.  相似文献   

14.
The occurrence of coral snake coloration among unrelated venomous and non-venomous New World snake species has often been explained in terms of warning coloration and mimicry. The idea that snake predators would avoid coral snakes in nature seems widely established and is postulated in many discussions on coral snake mimicry. However, the few workers that have tested a potential aposematic function of the conspicuous colour pattern focused exclusively on behaviour of snake predators towards coloured abstract models. Here we report on behaviour of temporarily caged, wild coatis (Nasua narica) when confronted with co-occurring live snakes, among which were two species of venomous coral snakes. Five different types of responses have been observed, ranging from avoidance to predation, yet none of the coatis avoided either of the two coral snake species or other species resembling these. As in earlier studies coatis appeared to avoid coral snake models, our findings show that results from studies with abstract snake models cannot unconditionally serve as evidence for an aposematic function of coral snake coloration.  相似文献   

15.
Richard Shine 《Oecologia》1986,69(2):260-267
Filesnakes (Acrochordus arafurae) are large (to 2 m), heavy-bodied snakes of tropical Australia. Sexual dimorphism is evident in adult body sizes, weight/length ratios, and body proportions (relative head and tail lengths). Dimorphism is present even in neonates. Two hypotheses for the evolution of such dimorphism are (1) sexual selection or (2) adaptation of the sexes to different ecological niches. The hypothesis of sexual selection is consistent with general trends of sexually dimorphic body sizes in snakes, and accurately predicts, for A. arafurae, that the larger sex (female) is the one in which reproductive success increases most strongly with increasing body size. However, the sexual dimorphism in relative head sizes is not explicable by sexual selection.The hypothesis of adaptation to sex-specific niches predicts differences in habitats and/or prey. I observed major differences between male and female A. arafurae in prey types, prey sizes and habitat utilization (shallow versus deep water). Hence, the sexual dimorphism in relative head sizes is attributed to ecological causes rather than sexual selection. Nonetheless, competition between the sexes need not be invoked as the selective advantage of this character divergence. It is more parsimonious to interpret these differences as independent adaptations of each sex to increase foraging success, given pre-existing sexually-selected differences in size, habitat or behavior. Data for three other aquatic snake species, from phylogenetically distant taxa, suggest that sexual dimorphism in food habits, foraging sites and feeding morphology, is widespread in snakes.  相似文献   

16.
The ability to assess and respond to predation risk is a strong selective force. Detection of predators is carried out by one or more sensory modalities, but the use of chemoreception has significant advantages. This study examines the chemosensorial assessment of snake predation risk and corresponding behaviours in different species and populations of Liolaemus lizards naturally exposed to different levels of snake predation pressure. The species studied were sympatric (Liolaemus lemniscatus), parapatric (L. nigroviridis) and allopatric (L. fitzgeraldi) to the saurophagous snake, Philodryas chamissonis. Additionally, two populations of L. lemniscatus from areas differing in snake densities were compared. Chemo‐assessment of predation risk was determined by comparing the number of tongue‐flicks (TF) and the behavioural responses of lizards submitted to three treatments (with semiochemicals of snake, conspecifics, and without semiochemicals – control). The results suggest that Liolaemus lizards can chemo‐assess snake predation risk, but this was modulated by the predation pressure experienced by lizards in their natural habitats. When exposed to snake semiochemicals, the sympatric prey showed less chemical exploratory behaviour (i.e. lower number of TF), a higher frequency of antipredator behaviours that would reduce its detection by a predator, and did not show the behaviour triggered by conspecific semiochemicals. The parapatric prey showed similar number of TF across different treatments, suggesting an absence of recognition of snake semiochemicals; however, it did show antipredatory behaviours when confronted with snake semiochemicals. The allopatric prey showed similar behaviour in all treatments. Both populations of the sympatric species, L. lemniscatus, showed a similar ability to detect predation risk when confronted with snake semiochemicals (i.e. similar number of TF), but antipredatory behaviours were diminished, and marking behaviours were present in the population subject to lower predation pressure. Relaxed predation pressure from a predator that releases and detects semiochemicals had similar consequences at species and population levels.  相似文献   

17.
Ben L. Phillips  Richard Shine 《Oikos》2006,112(1):122-130
Because many organismal traits vary with body size, interactions between species can be affected by the respective body sizes of the participants. We focus on a novel predator–prey system involving an introduced, highly toxic anuran (the cane toad, Bufo marinus ) and native Australian snakes. The chance of a snake dying after ingesting a toad depends on the size of the snake and the size of the toad, and ultimately reflects the effect of four allometries: (1) physiological tolerance (the rate that physiological tolerance to toad toxin changes with snake size); (2) swallowing ability (the rate that maximal ingestible toad size (i.e. snake head size) increases with snake body size); (3) prey size (the rate that prey size taken by snakes increases with snake head size) and (4) toad toxicity (the rate that toxicity increases with toad size). We measured these allometries, and combined them to estimate the rate at which a snake's resistance changes with toad toxicity. The parotoid glands (and thus, toxicity) of toads increased disproportionately with toad size (i.e. relative to body size, larger toads were more toxic) but simultaneously, head size relative to body size (and thus, maximal ingestible prey size relative to predator size) declined with increasing body size in snakes. Thus, these two allometries tended to cancel each other out. Physiological tolerance to toxins did not vary with snake body size. The end result was that across snake species, mean adult body size did not affect vulnerability. Within species, however, smaller predators were more vulnerable, because the intraspecific rate of decrease in relative head size of snakes was steeper than the rate of increase in toxicity of toads. Thus, toad invasion may cause disproportionate mortality of juvenile snakes, and adults of the sex with smaller mean adult body sizes.  相似文献   

18.
Introduced predators have become major threats to native animal species in oceanic islands. A number of studies have shown that alien predators have caused serious extinctions of island endemics. However, little attention has been paid to the evolutionary impacts of alien predators on native species. The present study shows that predation by black rats, Rattus rattus, has resulted in ecological and morphological changes in the land snail Mandarina anijimana from the island of Anijima in the Ogasawara archipelago. The frequency of empty predated shells has increased over the past 17–19 years in southern areas of the island. The shells of these snails were found to be significantly higher, smaller and darker in the survey in 2006 than in the survey in 1987–1989 performed in central and southern parts of Anijima, where predation by Rattus was serious. M. anijimana were formerly restricted to shallow broad-leaved litter, whereas they are currently found in deep palm litter, where predation pressure from Rattus may be lower. This suggests that increased predation pressure by Rattus has changed the habitat use of M. anijimana. The close association between shell morphology and habitat use of Mandarina species suggests that the habitat shift induced by the predation of Rattus has caused these changes in the shell morphology of M. anijimana over a period of 17–19 years.  相似文献   

19.
The arrival of an invasive species can have severe impacts on native species. The extent of the impact, as well as the speed at which native species may mount an adaptive response, depend upon the correlation between impact and the individual phenotypes of the native species. Strong correlation between phenotype and impact within the native species raises the possibility of rapid adaptive response to the invader. Here, we examine the impact of a dangerous newly arrived prey species (the highly toxic cane toad Bufo marinus ) on naïve predators (death adders Acanthophis praelongus ) in northern Australia. During laboratory trials and field radiotracking, toads killed 48% of the adders we studied. Long-term monitoring of the population also suggests a massive decline (>89%) in recent years concurrent with the arrival of toads. Variation in snake physiology (resistance to toad toxin) had little bearing on snake survival in the field. Snake behaviour (tendency to attack toads) and morphology (body size and head size), however, were strong predictors of snake survival. Smaller snakes with relatively small heads, and snakes that were unwilling to attack toads in the laboratory, had much higher survival rates in the field. These results show that toads have a massive impact on death adder populations, but that snake phenotypes strongly mediate this impact. Thus natural selection is operating on these adder populations and an adaptive response is a possibility. If these adders can rapidly shift toad-relevant morphological and behavioural traits (either through plastic or evolved means), they will ultimately face a lowered impact from this toxic invader.  相似文献   

20.
Nonlethal tail injury resulting from unsuccessful predation attempts is common in anuran larvae and can potentially induce significant fitness costs in terms of survival and growth. We tested the hypotheses that the alien red swamp crayfish, Procambarus clarkii, is an important inducer of tail injury in tadpoles of the Iberian spadefoot toad, Pelobates cultripes, and that tail damage can have important consequences for the tadpoles’ life history and morphology. This was investigated by first estimating frequencies of caudal injury in P. cultripes tadpoles in temporary ponds, with and without crayfish. Secondly, we performed a laboratory experiment in which four levels of tail injury frequency were combined with two levels of food availability.The frequency of tadpoles with damaged tails was higher in ponds with crayfish and the presence of this predator was the strongest predictor of tail injury frequency in a pond. Induced tail loss decreased larval survivorship and affected tail morphology, with injured tadpoles developing deeper tail muscles and shallower tail fins. The magnitude of these effects depended on injury frequency, as well as on food availability. The results suggest that P. clarkii is inflicting tail injuries at much higher levels than those occurring before its introduction; these injuries affect tadpole morphology and may induce delayed fitness costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号