首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee SH  Oh BI  Kim JG 《Bioresource technology》2008,99(7):2578-2587
To examine the effects of amendments on the degradation of heavy mineral oil, we conducted a pilot-scale experiment in the field for 105 days. During the experiment, soil samples were collected and analyzed periodically to determine the amount of residual hydrocarbons and evaluate the effects of the amendments on microbial activity. After 105 days, the initial level of contamination (7490+/-480 mg hydrocarbon kg(-1) soil) was reduced by 18-40% in amended soils, whereas it was only reduced by 9% in nonamended soil. Heavy mineral oil degradation was much faster and more complete in compost-amended soil than in hay-, sawdust-, and mineral nutrient-amended soils. The enhanced degradation of heavy mineral oil in compost-amended soil may be a result of the significantly higher microbial activity in this soil. Among the studied microbial parameters, soil dehydrogenase, lipase, and urease activities were strongly and negatively correlated with heavy mineral oil biodegradation (P<0.01) in compost-amended soil.  相似文献   

2.
Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.  相似文献   

3.
选择苜蓿草和水稻为供试植物,以污染物水平、有机以、专性细菌和真菌为调控因子,进行土壤中矿物油和PAHs的生物修复研究,结果表明,投肥对苜蓿草土壤中矿物油降解有促进作用,但对水稻土壤中矿物油降解无明显作用,投肥均使苜蓿草和水稻土壤中多环芒烃总量(11种列于美国EPA黑名单上的多环芳烃)降解率提高,这一降解促进效果在水稻土壤中好于苜蓿草土壤,有机肥量与苜蓿草根际土著真菌、细菌数量明显呈正相关,但仅与水稻根际土著细菌数量呈明显正相关,两种土壤中实测真菌和细菌总数均与试验投加专性真菌和细菌量无关,水稻土和苜蓿草土壤中3环多环芳烃的降解随投肥量增大而降解率提高,其在水稻土蓑中的效果好于苜蓿草土壤,投肥怪4环多环芳烃的降解并未产生有效作用。  相似文献   

4.
In this study hexachlorocyclohexane (HCH) contaminated soil (with HCH level 84 g/kg of soil) from HCH dumpsite (Ummari village, Lucknow, India) was used to demonstrate biostimulation approach for HCH bioremediation. Different nutrients (molasses and ammonium phosphate) were used in different pits having contaminated soil to stimulate the indigenous microbial community. There was a substantial reduction in the total HCH content of the soil in 12 months long experiment. Maximum reduction was seen in the pit that received a combination of molasses and ammonium phosphate. A change in the microbial community concomitant with degradation of HCH was observed. Sphingomonads, which are known degraders of HCH, were found to dominate the experimental pits. Moreover changes in linA and linB gene (primary genes involved in HCH degradation) diversity and number were also seen as revealed by T-RFLP and RT-PCR respectively. The study suggests the prospects of biostimulation in decontaminating soils heavily contaminated with HCH.  相似文献   

5.
The organochlorine 1,2,3,4,5,6 hexachlorocyclohexane (HCH) is a broad-spectrum insecticide that was used on a large-scale worldwide. The soil–plant–microbe system and its influence on HCH biodegradation are evaluated. A greenhouse experiment was designed to evaluate HCH dissipation and several microbial parameters among rhizosphere and bulk soil of two contrasting plants, Cytisus striatus (Hill) Rothm and Holcus lanatus L. Plants were grown for 180 days in three treatments: uncontaminated soil (control), uncontaminated soil inoculated with soil (3% w/w) from a HCH-contaminated site (INOC), and uncontaminated soil inoculated with soil (3% w/w) from the HCH-contaminated site and artificially contaminated to obtain 100 mg HCH kg−1 dry soil (100HCH-INOC). At harvest, plant biomass, soil water-extractable organic C, pH and Cl concentration, rhizosphere microbial densities (total heterotrophs, ammonifiers, amylolytics) and C substrate utilization patterns, and degradation of α-, β-, δ- and γ-HCH isomers were determined in bulk and rhizosphere soils. Soil solution Cl concentration was determined every 30 days throughout the entire growth period. Results demonstrate that both Cytisus striatus and Holcus lanatus can grow in soils with up to 100 mg HCH kg−1. An enhanced degradation of α-HCH, but not β- or δ-HCH, was observed in the rhizosphere. Significant changes in the microbial densities were observed between bulk and rhizosphere soils of Cytisus, and an increase in C source utilization indicated changes in community level physiological profiles (CLPP) in the rhizosphere of this species when grown in contaminated soils. HCH dissipation was also greater in soils planted with this species. In accordance, increases in soil extractable C, Cl concentration and acidity were greater at the rhizosphere of Cytisus. Concentration of Cl in soil solutions also indicates greater HCH dechlorination in soils planted with Cytisus than Holcus. Results suggest that phytostimulation of bacteria present or added to soil is a promising approach to cleaning HCH-contaminated sites, and especially for biodegradation of α-HCH.  相似文献   

6.
Abstract

Hexachlorocyclohexane (HCH), a highly chlorinated pesticide, was used worldwide in the 1950s and 1960s. HCH toxic residues are still detected in environmental compartments. Thus, effective, viable and eco-friendly strategy is required for its remediation. In this study, degradation of four HCH isomers was evaluated by amending contaminated soil using four treatments of spent mushroom compost (SMC) of Pleurotus ostraetus. The soil was incubated for 5 weeks and was sampled every seven days. Quantitative attenuation in HCH was calculated using gas chromatography–electron capture detector (GC-ECD) and metabolite was identified using gas chromatography–mass selective detector (GC-MSD). Maximum reduction 58%, 26%, 45%, and 64% for α-, β-, γ- and δ-HCH isomers, respectively, using SMC and soil (both unsterilized) showed that this treatment was the best for bioremediation of HCH in soil. However, when one of the factors, either soil or SMC, was sterilized, a significant reduction in HCH degradation was noticed. The second most reduction of isomers was seen during treatment where unsterilized SMC was added in sterilized soil followed by treatment where SMC was sterilized but soil was not. Abiotic control did not remove any significant quantities of HCH. Simple first-order (SFO) kinetic confirmed that SMC reduced the half-live manifolds as compared to biotic control. Only one metabolite δ-PCCH was identified during the course of study.  相似文献   

7.
AIM: To isolate gamma-hexachlorocyclohexane (HCH)-degrading bacteria from contaminated soil and characterize the metabolites formed and the genes involved in the degradation pathway. METHODS AND RESULTS: A bacterial strain Xanthomonas sp. ICH12, capable of biodegrading gamma- HCH was isolated from HCH-contaminated soil. DNA-colony hybridization method was employed to detect bacterial populations containing specific gene sequences of the gamma-HCH degradation pathway. linA (dehydrodehalogenase), linB (hydrolytic dehalogenase) and linC (dehydrogenase) from a Sphingomonas paucimobilis UT26, reportedly possessing gamma-HCH degradation activity, were used as gene probes against isolated colonies. The isolate was found to grow and utilize gamma-HCH as the sole carbon and energy source. The 16S ribosomal RNA gene sequence of the isolate resulted in its identification as a Xanthomonas species, and we designated it as strain ICH12. During the degradation of gamma-HCH by ICH12, formation of two intermediates, gamma-2,3,4,5,6-pentachlorocyclohexene (gamma-PCCH), and 2,5-dichlorobenzoquinone (2,5-DCBQ), were identified by gas chromatography-mass spectrometric (GC-MS) analysis. While gamma-PCCH was reported previously, 2,5-dichlorohydroquinone was a novel metabolite from HCH degradation. CONCLUSIONS: A Xanthomonas sp. for gamma-HCH degradation from a contaminated soil was isolated. gamma-HCH was utilized as sole source of carbon and energy, and the degradation proceeds by successive dechlorination. Two degradation products gamma-PCCH and 2,5-DCBQ were characterized, and the latter metabolite was not known in contrasts with the previous studies. The present work, for the first time, demonstrates the potential of a Xanthomonas species to degrade a recalcitrant and widespread pollutant like gamma-HCH. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the isolation and characterization of a novel HCH-degrading bacterium. Further results provide an insight into the novel degradation pathway which may exist in diverse HCH-degrading bacteria in contaminated soils leading to bioremediation of gamma-HCH.  相似文献   

8.
植物法生物修复PAHs和矿物油污染土壤的调控研究   总被引:69,自引:7,他引:62  
选择苜蓿草为供试植物,以污染物含量水平、专性细菌和真菌及有机肥为调控因子,进行了植物法生物修复多环芳烃(PAHs)和矿物油污染土壤的调控研究。结果表明,PAHs和矿物油的降解率与有机肥含量呈正相关,增加有机肥5%,可提高矿物油降解率17.6%~25.6%,PAHs降解率9%.在植物存在条件下,土壤微生物降解功能增强。多环芳烃总量的平均降解率比无植物对照土壤提高2.0%~4.7%.投加特性降解真菌可不同程度地提高土壤PAHs总量和矿物油的降解率。真菌对萤蒽、芘和苯(a)蒽/(艹屈)的降解有明显促进作用。而细菌能明显提高苊稀/芴、蒽和苯(a)萤蒽/苯(k)萤蒽的降解率。  相似文献   

9.
A field study was initiated in December 2000 in two selected sub-Antarctic soils (Kerguelen Archipelago) with the objective of determining the long-term effects of a fertilizer addition on the degradation rate and the toxicity of oil residues under severe sub-Antarctic conditions. Two soils were selected. The first site was an organic soil supporting an abundant vegetal cover while the second one was a mineral soil, free from vegetation. Both soils were located in the vicinity of the permanent station of Port-aux-Français (69°42′E?49°19′S). Two series of five experimental plots (0.75 × 0.7 5 m) were settled firmly into each of the studied soils. Each plot received 500 ml of diesel fuel or Arabian light crude oil and some of them were treated with a bioremediation agent: the slow release fertilizer Inipol EAP-22® (Elf Atochem). All plots were sampled on a regular basis over a 4-year period. The microbial response was improved by bioremediation treatments but fertilizer addition had a greater impact on the mineral soil when compared to the organic one. The rate of degradation was significantly improved by bioremediation treatments. However, even after 4 years, the toxicity of oiled soils as determined by Microtox solid phase tests showed a persistent response in spite of an apparent significant degradation of alkanes and aromatics. Despite the very small amount of contaminant used in this experiment, 4 years of bioremediation was not sufficient to obtain a complete return to pristine conditions  相似文献   

10.
Microarray technology was used to characterize and compare hexachlorocyclohexane (HCH) contaminated soils from Spain. A library of 2,290 hypervariable 16S rRNA gene sequences was prepared with serial analysis of ribosomal sequence tags (SARST) from a composite of contaminated and uncontaminated soils. By designing hybridization probes specific to the 100 most abundant ribosomal sequence tags (RSTs) in the composite library, the RST array was designed to be habitat-specific and predicted to monitor the most abundant polymerase chain reaction (PCR)-amplified phylotypes in the individual samples. The sensitivity and specificity of the RST array was tested with a series of pure culture-specific probes and hybridized with labelled soil PCR products to generate hybridization patterns for each soil. Sequencing of prominent bands in denaturing gradient gel electrophoresis (DGGE) fingerprints derived from these soils provided a means by which we successfully confirmed the habitat-specific array design and validated the bulk of the probe signals. Non-metric multidimensional scaling revealed correlations between probe signals and soil physicochemical parameters. Among the strongest correlations to total HCH contamination were probe signals corresponding to unknown Gamma Proteobacteria, potential pollutant-degrading phylotypes, and several organisms with acid-tolerant phenotypes. The strongest correlations to alpha-HCH were probe signals corresponding to the genus Sphingomonas, which contains known HCH degraders. This suggests that the population detected was enriched in situ by HCH contamination and may play a role in HCH degradation. Other environmental parameters were also likely instrumental in shaping community composition in these soils. The results highlight the power of habitat-specific microarrays for comparing complex microbial communities.  相似文献   

11.
A double selective plating medium has been developed to enumerate a Pseudomonas Ptm+ strain capable of assimilating hexachlorocyclohexane (HCH). The ability of the isolate to utilize HCH and/or streptomycin as sole sources of carbon was chosen to impart selectivity. In trials when serial 10-fold soil dilutions were spread on HCH plus streptomycin mineral agar and incubated, the normal microflora did not grow. When soil containing an HCH degrading Pseudomonas was cultured, only the target colonies developed. This double selective plating method is suitable for environmental monitoring of HCH scavengers as the medium is sensitive, specific and practical.  相似文献   

12.
We studied the role of aerobic and anaerobic petroleum hydrocarbon degradation at a boreal, light-weight fuel and lubrication oil contaminated site undergoing natural attenuation. At the site, anoxic conditions prevailed with high concentrations of CH4 (up to 25% v/v) and CO2 (up to 18% v/v) in the soil gas throughout the year. Subsurface samples were obtained mainly from the anoxic parts of the site and they represented both the unsaturated and saturated zone. The samples were incubated in microcosms at near in situ conditions (i.e. in situ temperature 8 degrees C, aerobic and anaerobic conditions, no nutrient amendments) resulting in the removal of mineral oil (as determined by gas chromatography) aerobically as well as anaerobically. In the aerobic microcosms on average 31% and 27% of the initial mineral oil was removed during a 3- and 4-month incubation, respectively. In the anaerobic microcosms, on average 44% and 15% of the initial mineral oil was removed during a 12- and 10-month anaerobic incubation, respectively, and e.g. n-alkanes from C11 to C15 were removed. A methane production rate of up to 2.5 microg CH4 h(-1) g(-1) dwt was recorded in these microcosms. In the aerobic as well as anaerobic microcosms, typically 90% of the mineral oil degraded belonged to the mineral oil fraction that eluted from the gas chromatograph after C10 and before C15, while 10% belonged to the fraction that eluted after C15 and before C40. Our results suggest that anaerobic petroleum hydrocarbon degradation, including n-alkane degradation, under methanogenic conditions plays a significant role in the natural attenuation in boreal conditions.  相似文献   

13.
The aerobic degradation of light fuel oil in sandy and loamy soils by an environmental bacterial consortium was investigated. Soils were spiked with 1 or 0.1% of oil per dry weight of soil. Acetone extracts of dried soils were analyzed by GC and the overall degradation was calculated by comparison with hydrocarbon recovery from uninoculated soils. In sandy soils, the sum of alkanes n-C(12) to n-C(23) was degraded to about 45% within 6 days at 20 degrees C and to 27-31% within 28 days, provided that moisture and nutrients were replenished. Degradation in loamy soil was about 12% lower. The distribution of recovered alkanes suggested a preferential degradation of shorter chain molecules (n-C(12) to n-C(16)) by the bacterial consortium. Partial 16S rDNA sequences indicated the presence of strains of Pseudomonas aeruginosa, Pseudomonas citronellolis, and Stenotrophomonas maltophilia. Toxicity tests using commercial standard procedures showed a moderate inhibition of bacterial activity. The study showed the applicability of a natural microbial community for the degradation of oil spills into soils at ambient temperatures.  相似文献   

14.
Oil presence in soil, as a stressor, reduces phytoremediation efficiency through an increase in the plant stress ethylene. Bacterial 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, as a plant stress ethylene reducer, was employed to increase oil phytoremediation efficiency. For this purpose, the ability of ACC deaminase-producing Pseudomonas strains to grow in oil-polluted culture media and withstand various concentrations of oil and also their ability to reduce plant stress ethylene and enhance some growth characteristics of maize and finally their effects on increasing phytoremediation efficiency of poly aromatic hydrocarbons (PAHs) in soil were investigated. Based on the results, of tested strains just P9 and P12 were able to perform oil degradation. Increasing oil concentration from 0 to 10% augmented these two strains population, 15.7% and 12.9%, respectively. The maximum increase in maize growth was observed in presence of P12 strain. Results of high-performance liquid chromatography (HPLC) revealed that PAHs phytoremediation efficiency was higher for inoculated seeds than uninoculated. The highest plant growth and PAHs removal percentage (74.9%) from oil-polluted soil was observed in maize inoculated with P12. These results indicate the significance of ACC deaminase producing bacteria in alleviation of plant stress ethylene in oil-polluted soils and increasing phytoremediation efficiency of such soils.  相似文献   

15.
Two distinct microbial dehalogenases are involved in the first steps of degradation of hexachlorocyclohexane (HCH) isomers. The enzymes, LinA and LinB, catalyze dehydrochlorination and dechlorination reactions of HCH respectively, each with distinct isomer specificities. The two enzymes hold great promise for use in the bioremediation of HCH residues in contaminated soils, although their kinetics and isomer specificities are currently limiting. Here we report the functional screening of a library of 700 LinA and LinB clones generated from soil DNA for improved dechlorination activity by means of a high throughput colorimetric assay. The assay relies upon visual colour change of phenol red in an aqueous medium, due to the pH drop associated with the dechlorination reactions. The assay is performed in a microplate format using intact cells, making it quick and simple to perform and it has high sensitivity, dynamic range and reproducibility. The method has been validated with quantitative gas chromatographic analysis of promising clones, revealing some novel variants of both enzymes with superior HCH degrading activities. Some sphingomonad isolates with potentially superior activities were also identified.  相似文献   

16.
Summary Using a model system containing 10% soil and a 1.35% hydrocarbon mixture of tetradecane, pentadecane, hexadecene, pristane (2,6,10,14-tetramethylpentadecane), trimethylcyclohexane, phenyldecane and naphthalene suspended in a mineral salts medium, the hydrocarbon degradation rate by a soil population was 25.7 g model oil per kg soil dry weight per day under non-limited conditions within two degradation phases. During the first degradation phase only the most water-soluble naphthalene was degraded, while the other components could only be metabolized when the interfacial tension was lowered by the production of surfactants at the beginning of the second degradation phase. This second degradation phase ended when 89% of the hydrocarbons were metabolized.Dedicated to Professor F. Wagner on the occasion of his 60th birthday  相似文献   

17.
Phosphorus (P) content may influence bioremediation of soils contaminated with crude oil. A soil testing high in plant available P (Weswood, 194 mg P kg?1 soil) and one testing low in plant available P (Lufkin, 2 mg P kg?1 soil) were selected for laboratory experiments on oil biodegradation. Plant available P content was determined using acidified ammonium acetate at pH 4.2 as the soil extractant. Soils were amended with 3, 6, and 9% crude oil by weight and incubated for 120 d at 25°C. Treatments consisted of a factorial arrangement, with soil, N, P, and oil concentration as factors. Addition of P without N generally did not enhance biodegradation. Addition of N without P approximately tripled the quantity of oil degraded. Addition of P and N together did not increase biodegradation of oil more than addition of N alone when oil concentration was 3%. At 6 and 9% oil concentrations, CO2 evolution increased for both soils by adding P and N together in comparison to adding N alone, and total petroleum hydrocarbon (TPH) bio‐degradation increased by 30% for the Weswood soil by 60 d and at least 25% for the Lufkin soil by 30 d. The quantity of plant‐available P or total P in soil was not very useful in predicting need for supplemental P. Addition of P to soil to enhance oil degradation was only beneficial for oil concentrations above 3% and the positive effect for higher concentrations was transitory.  相似文献   

18.
Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.  相似文献   

19.
Biological treatment has become increasingly popular as a remediation method for soils and groundwater contaminated with petroleum hydrocarbon, chlorinated solvents, and pesticides. Bioremediation has been considered for application in cold regions such as Arctic and sub-Arctic climates and Antarctica. Studies to date suggest that indigenous microbes suitable for bioremediation exist in soils in these regions. This paper reports on two case studies at the sub-Antarctic Kerguelen Island in which indigenous bacteria were found that were capable of mineralizing petroleum hydrocarbons in soil contaminated with crude oil and diesel fuel. All results demonstrate a serious influence of the soil properties on the biostimulation efficiency. Both temperature elevation and fertilizer addition have a more significant impact on the microbial assemblages in the mineral soil than in the organic one. Analysis of the hydrocarbons remaining at the end of the experiments confirmed the bacterial observations. Optimum temperature seems to be around 10 degrees C in organic soil, whereas it was higher in mineral soil. The benefit of adding nutrients was much stronger in mineral than in the organic soil. Overall, this study suggests that biostimulation treatments were driven by soil properties and that ex situ bioremediation for treatment of cold contaminated soils will allow greater control over soil temperature, a limiting factor in cold climates.  相似文献   

20.
The ability of Burkholderia sp. VUN10013 to degrade anthracene in microcosms of two acidic Thai soils was studied. The addition of Burkholderia sp. VUN10013 (initial concentration of 10(5) cells g(-1) dry soil) to autoclaved soil collected from the Plew District, Chanthaburi Province, Thailand, supplemented with anthracene (50 mg kg(-1) dry soil) resulted in complete degradation of the added anthracene within 20 days. In contrast, under the same test conditions but using autoclaved soil collected from the Kitchagude District, Chanthaburi Province, Thailand, only approximately 46.3% of the added anthracene was degraded after 60 days of incubation. In nonautoclaved soils, without adding the VUN10013 inocula, 22.8 and 19.1% of the anthracene in Plew and Kitchagude soils, respectively, were degraded by indigenous bacteria after 60 days. In nonautoclaved soil inoculated with Burkholderia sp. VUN10013, the rate and extent of anthracene degradation were considerably better than those seen in autoclaved soils or in uninoculated nonautoclaved soils in that only 8.2 and 9.1% of anthracene remained in nonautoclaved Plew and Kitchagude soils, respectively, after 10 days of incubation. The results showed that the indigenous microorganisms in the pristine acidic soils have limited ability to degrade anthracene. Inoculation with the anthracene-degrading Burkholderia sp. VUN10013 significantly enhanced anthracene degradation in such acidic soils. The indigenous microorganisms greatly assisted the VUN10013 inoculum in anthracene degradation, especially in the more acidic Kitchagude soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号