首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vasoactive intestinal peptide (VIP) stimulated cyclic AMP production in rat peritoneal macrophages. The stimulatory effect of VIP was dependent on time, temperature and cell concentration, and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). At 15 degrees C, the response occurred in the 0.1-1000 nM range of VIP concentrations. Half maximal stimulation of cellular cyclic AMP (ED50) was obtained at 1.2 +/- 0.5 nM VIP, and maximal stimulation (about 3-fold basal level) was obtained between 100-1000 nM. The cyclic AMP system of rat peritoneal macrophages showed a high specificity for VIP. The order of potency observed in inducing cyclic AMP production was VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, pancreastatin and octapeptide of cholecystokinin did not modify cyclic AMP levels at concentrations as high as 1 microM. The beta-adrenergic agonist isoproterenol increased the cyclic AMP production and show additive effect with VIP. Somatostatin inhibits the accumulation of cyclic AMP in the presence of both vasoactive intestinal peptide and isoproterenol. The finding of a VIP-stimulated cyclic AMP system in rat peritoneal macrophages, together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, strongly suggest that VIP may be involved in the regulation of macrophage function.  相似文献   

2.
T Agui  K Matsumoto 《Peptides》1990,11(3):609-611
The vasoactive intestinal peptide (VIP) receptors were identified on the membranes from the rat anterior pituitary gland with [125I]VIP. The dissociation constant (Kd) and the maximal binding capacity (Bmax) values were estimated from the competitive inhibition data. The Kd and Bmax values were 1.05 +/- 0.75 nM and 103 +/- 11 fmol/mg protein, respectively. The order of molar potency of related peptides to inhibit [125I]VIP binding was VIP greater than peptide histidine isoleucine (PHI) greater than secretin greater than glucagon. Glucagon was not effective to inhibit the binding. [125I]VIP binding was effectively inhibited by the addition of guanine nucleotides. The order of molar potency to inhibit the binding was Gpp(NH)p greater than GTP greater than GDP greater than GMP greater than ATP. These results directly suggest the coupling of VIP receptors with guanine nucleotide binding proteins in the anterior pituitary gland.  相似文献   

3.
M Huang  O P Rorstad 《Peptides》1987,8(3):477-485
Using a biologically active radioligand, [Tyr(125I)10]VIP, we have identified and characterized receptors for vasoactive intestinal peptide (VIP) on membranes prepared from the rat superior mesenteric artery and bovine coronary arteries. Binding was specific, saturable, reversible and dependent on time and temperature. Scatchard analysis suggested the presence of a high and a low affinity binding site in each arterial system with the following binding constants: the rat mesenteric artery, KD = 0.22 +/- 0.02 and 13.6 +/- 7.8 nM (corresponding maximum number of binding sites, RO = 606 +/- 44 fmol/mg protein and 2.1 +/- 0.2 pmol/mg protein); bovine circumflex coronary artery, KD = 0.10 +/- 0.01 and 37.8 +/- 16.1 nM (corresponding RO = 369 +/- 65 fmol/mg protein and 2.0 +/- 0.7 pmol/mg protein); bovine left and right descending coronary arteries, KD = 0.12 +/- 0.03 and 21.3 +/- 6.4 nM (corresponding RO = 472 +/- 7 fmol/mg protein and 2.2 +/- 0.3 pmol/mg protein). The arterial VIP receptors did not recognize secretin, glucagon, apamin or bovine parathyroid hormone, and had reduced affinity for PHI, PHM and growth hormone releasing factors (GRF). These recognition properties were, by and large, similar to those seen in the bovine cerebral arteries although a between-species heterogeneity of recognition function could be deduced from the differences in the competitive binding of rat and bovine vascular VIP receptors with the corresponding species-specific GRFs.  相似文献   

4.
Vasoactive intestinal peptide (VIP) receptors were solubilized from rat liver using the zwitterionic detergent CHAPS. Optimal conditions of solubilization were obtained with 5 mM CHAPS and 2.5 mg protein/ml. The binding of 125I-VIP to CHAPS extracts was time- and pH-dependent, saturable and reversible. The following order of potency of unlabeled VIP-related peptides for inhibiting 125I-VIP binding was observed: VIP greater than helodermin greater than peptide histidine isoleucine amide (PHI) greater than rat growth hormone releasing factor (rGRF) greater than secretin. This peptide specificity is identical to that of rat liver membrane-bound receptors. VIP binding activity in the CHAPS extract was destroyed by trypsin or dithiothreitol in accordance with the known sensitivity of membrane-bound receptors to these agents. VIP receptors in CHAPS extracts were stable for at least 5 days at 4 degrees C. Scatchard analysis of equilibrium binding data indicated the presence in CHAPS extracts of high (H) and low (L) affinity binding sites with the following characteristics: KdH = 0.27 nM and BmH = 34 fmol/mg protein; KdL = 51 nM and BmL = 1078 fmol/mg protein. The guanine nucleotide GTP inhibited 125I-VIP binding to soluble receptors and enhanced the dissociation of soluble VIP-receptor complexes, suggesting that GTP-binding proteins were functionally associated with VIP receptors in solution. Gel filtration of solubilized VIP receptors on Sephacryl S-300 revealed a single binding component with a Stokes radius of 6.1 nm. It is concluded that active VIP receptors can be extracted from liver membranes by CHAPS. The availability of this CHAPS-soluble, stable and functional receptor from a tissue which can be obtained in large amounts represents a major step toward the purification of VIP receptors.  相似文献   

5.
The human colon adenocarcinoma cell line HT-29 in culture exhibits a cyclic AMP production system highly sensitive to vasoactive intestinal peptide (VIP), making HT-29 cells a unique cultured cell system for studying the mechanism of VIP action [Laburthe, Rousset, Boissard, Chevalier, Zweibaum & Rosselin (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2772-2775]. The quantitative characteristics of VIP receptors in HT-29 cells and their structural requirement and molecular size were studied. 125I-labeled VIP bound in a time-dependent manner to HT-29 cell homogenates. At equilibrium (60 min incubation at 30 degrees C), unlabelled VIP in the 0.01-10 nM concentration range competed with 125I-VIP for binding to cell homogenates. Scatchard analysis of binding data gave a straight line, indicating that VIP bound to a single population of sites with a KD of 0.12 +/- 0.02 nM and a capacity of 120 +/- 9 fmol/mg of protein. The structural requirement of these receptors was studied with peptides structurally related to VIP, either natural or synthetic. Several peptides inhibited 125I-VIP binding to HT-29 cell homogenates with the following order of potency, which is typical of the human VIP receptor: VIP (IC50 = 0.1 nM) greater than VIP-(2-28)-peptide (IC50 = 13 nM) greater than human growth hormone releasing factor (IC50 = 56 nM) greater than peptide histidine isoleucine amide (IC50 = 80 nM) greater than secretin (IC50 greater than 10 000 nM). To characterize the molecular component(s) of the VIP receptor in HT-29 cells, 125I-VIP was covalently bound to cell homogenates by using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulphate/polyacrylamide-gel autoradiographic studies of affinity-labelled cell homogenates revealed two major bands, corresponding to 125I-VIP-protein complexes of Mr 66 000 and 16 000. The labelling of the Mr-66 000 component was specific, since it was abolished by native VIP, whereas that of the Mr-16 000 component was not. Densitometric scanning of autoradiographs indicated that the labelling of the Mr-66 000 complex was inhibited by low VIP concentrations in the 0.1-10 nM range (IC50 = 0.6 nM), but was unaffected by 1 microM-glucagon or octapeptide of cholecystokinin. It was also decreased by VIP-(2-28)-peptide with a potency 1% that of VIP. Assuming that one molecule of 125I-VIP bound per molecule of protein, one protein of Mr 63 000 was identified as a component of the VIP receptor in HT-29 cells.  相似文献   

6.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues.  相似文献   

7.
Vasoactive intestinal peptide (VIP) receptors have been identified in CNS by their chemical specificity and molecular size. Using synaptosomes isolated from rat cerebral cortex, it was shown that central VIP receptors discriminated among natural and synthetic VIP-related peptides, because half-maximal inhibition of [125I]VIP binding to synaptosomes was obtained for 0.6 nM VIP, 9 nM peptide histidine isoleucineamide (PHI), 50 nM VIP 2-28, 70 nM secretin, 100 nM rat growth hormone-releasing factor (GRF), and 350 nM human GRF. Other peptides of the VIP family, such as glucagon and gastric inhibitory polypeptide, did not interact with cortical VIP receptors. The molecular components of VIP receptors in rat cerebral cortex were identified after [125I]VIP cross-linking to synaptosomes using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of synaptosomal proteins revealed two major [125I]VIP-protein complexes of Mr 49,000 and 18,000. The labeling of the Mr 49,000 component was specific, because it was abolished by native VIP, whereas the labeling of the Mr 18,000 component was not. Natural VIP agonists reduced the labeling of the Mr 49,000 component with the following order of potency: VIP greater than PHI greater than secretin approximately equal to rat GRF. In contrast, glucagon and octapeptide of cholecystokinin were without effect, a result indicating its peptide specificity. Densitometric scanning of autoradiographs showed that the labeling of the Mr 49,000 component was inhibited by low VIP concentrations between 10(-10) and 10(-6) M (IC50 = 0.8 nM), a result indicating the component's high affinity for VIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Characterization of angiotensin II receptor subtypes in rat liver   总被引:4,自引:0,他引:4  
Radioligand binding studies identified two classes of 125I-angiotensin II-binding sites in rat liver membranes. High affinity binding sites (Kd = 0.35 +/- 0.13 nM, N = 372 +/- 69 fmol/mg of protein) were inactivated by dithiothreitol (0.1-10 mM) without any apparent change in low affinity binding sites (Kd = 3.1 +/- 0.8 nM, N = 658 +/- 112 fmol/mg of protein). Dithiothreitol inactivation was readily reversible but could be made permanent by alkylation of membrane proteins with iodoacetamide. Angiotensin II stimulation of glycogen phosphorylase in isolated rat hepatocytes (maximal stimulation 780%, EC50 = 0.4 nM) was completely inhibited by 10 mM dithiothreitol, a concentration which also abolished high affinity site binding; phosphorylase stimulation by glucagon and norepinephrine under these conditions was unaltered. Angiotensin II inhibition of glucagon-stimulated adenylate cyclase activity in hepatocytes required higher angiotensin II concentrations (EC50 = 3 nM) than phosphorylase stimulation and was not affected by dithiothreitol. Fractional occupancy of high affinity binding sites by 125I-angiotensin II correlated closely with angiotensin II-mediated phosphorylase stimulation, whereas occupancy of low affinity sites paralleled inhibition of adenylate cyclase activity. These data indicate that the physiologic effects of angiotensin II in rat liver are mediated by two distinct receptors, apparently not interconvertible, and provide the first evidence for angiotensin II receptor subtypes with differing biochemical features and mechanisms of action.  相似文献   

9.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

10.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

11.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 +/- 0.3 nM and a Bmax of 1.20 +/- 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP greater than helodermin greater than rat GRF greater than rat PHI greater than secretin greater than human GRF. GTP inhibited 125I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insentive, G protein-free form. This represents a major advance towards the purification of VIP receptors.  相似文献   

12.
The zwitterionic detergent CHAPS was used to solubilize functional receptors for vasoactive intestinal peptide (VIP) from guinea pig lung. The solubilized receptors were resolved by high performance gel filtration in 3 mM CHAPS into two active fractions with apparent Stokes radii of 5.9 +/- 0.1 and 2.3 +/- 0.1 nm. The binding of 125I-VIP to the two receptor fractions was time-dependent, reversible, and saturable. Trypsin destroyed the binding activity of the receptor fractions, indicating their proteinic nature. Unlabeled VIP competitively displaced the binding of 125I-VIP to the 5.9-nm fraction (IC50 = 240 pM) and the 2.3-nm fraction (IC50 = 1.2 microM). Scatchard analysis indicated a single class of binding sites in each receptor fraction, with Kd values 300 pM and 0.97 microM for the 5.9- and 2.3-nm Stokes radii fractions, respectively. When the high affinity, 5.9-nm Stokes radius fraction was rechromatographed in 9 nM CHAPS, 46% of the binding activity eluted in the low affinity, 2.3-nm Stokes radius fraction, indicating that the latter is a product of dissociation of the high affinity receptor complex. GTP inhibited the binding of 125I-VIP to the high affinity complex but not the low affinity species. Scatchard plots of VIP binding by the high affinity receptors treated with GTP suggested the presence of two distinct binding sites (Kd 4.4 and 153 nM), compared to a single binding site (Kd = 0.3 nM) obtained in untreated receptors. The nonhydrolyzable GTP analog, guanyl-5'-yl-imidodiphosphate, inhibited VIP binding by the high affinity receptor fraction with potency nearly equivalent to that of GTP. These observations suggest that GTP-binding regulatory proteins are functionally coupled to the VIP-binding subunit in the high affinity receptor complex. The peptide specificity characteristics of the two receptor fractions were different. Peptide histidine isoleucine and growth hormone releasing factor, peptides homologous to VIP, were 87.5- and 22.9-fold less potent than VIP in displacing 125I-VIP binding by the high affinity receptor complex, respectively. On the other hand, growth hormone-releasing factor was more potent (22.7-fold) and peptide histidine isoleucine was less potent (31.3-fold) than VIP in displacing the binding by the low affinity species.  相似文献   

13.
Vasoactive intestinal polypeptide (VIP)-immunoreactive nerves have been demonstrated in close association with the islets of Langerhans, and VIP has been shown to stimulate insulin and somatostatin secretion. Using [125I]VIP and membranes prepared from rat insulinoma (RIN) cells, i.e., the subclones m5F (m5F; mainly insulin-secreting) and 14B (14B; mainly somatostatin-secreting), it was found that VIP (10(-10)-10(-7) M) competitively inhibited the binding of [125I]VIP. A single class of high affinity binding sites with Kd values of 0.40 +/- 0.06 nM and 0.36 +/- 0.08 nM for m5F and 14B, respectively, with a corresponding number of binding sites (Bmax) of 163 +/- 20 and 254 +/- 51 fmol/mg protein was observed. The rank order of potency in inhibiting [125I]VIP binding was in both cell lines: VIP greater than helodermin greater than pituitary adenylate cyclase activating polypeptide 1-27 (PACAP27) greater than peptide histidine isoleucine (PHI) greater than secretin. VIP caused a dose-dependent increase in cAMP-formation in both m5F and 14B cell membranes with EC50 values of 3.0 and 3.5 nM, respectively, but VIP (1.10(-9)-3.10(-6) M) had no effect on insulin secretion (over 2 h) from the m5F cells. Thus, the data suggest that the VIP-receptors in these neoplastic rat cell lines, despite an apparent coupling to adenylate cyclase activity, seem to be functionally uncoupled to an effect on insulin secretion following an acute exposure to VIP.  相似文献   

14.
In human antral membranes, VIP and its natural analogs inhibited the binding of HPLC-purified 125I-VIP, according to the following order of potency: VIP greater than rh GRF greater than helodermin greater than r PHI greater than PHM greater than p PHI greater than hp GRF greater than h, p secretin. No specific binding was detected in plasma membranes purified from the human fundus. In human antral membranes, Scatchard plots were compatible with the existence of two classes of VIP receptors, the first class with high affinity and low binding capacity (Kd = 0.1 nM, Bmax = 10 fmol/mg protein) and another class with a low affinity and higher binding capacity (Kd = 12) nM, Bmax = 1,000 fmol/mg protein). The structure of the VIP receptor in purified plasma membranes prepared from human antral glands and from the HGT-1 human gastric cancer cells was subsequently probed using the cross-linking reagent DSP and 125I-VIP. In agreement with the pharmacological study and the Scatchard analysis of the binding data, SDS gel electrophoresis of the solubilized receptor identified two radiolabeled peptides Mr 67,000 and 34,000 containing disulfide bonds. According to its sensitivity to low doses of VIP and to GTP, the Mr 67,000 binding site represents the membrane domains involved in the physiologial regulation of adenylate cyclase by VIP in normal and transformed human gastric epithelia.  相似文献   

15.
Vasoactive intestinal peptide (VIP) stimulated adenylyl cyclase activity in membranes from rat seminal vesicle. GTP potentiated the stimulatory effect of VIP so that it was routinely included at 10 microM. The stimulation of adenylyl cyclase by VIP was time and temperature dependent. The response was linear with time up to 15 min at 30 degrees C. Half-maximal adenylyl cyclase activation (in the presence of 10 microM GTP) was achieved at 3.0 nM VIP. The enzyme activity increased about 150% with respect to basal values at the maximal VIP concentration tested (1 microM). The relative potency of peptides upon stimulation of adenylyl cyclase activity was: VIP greater than helodermin greater than peptide histidine isoleucinamide greater than rat growth hormone-releasing factor. Other agents like GTP (0.1 mM), GppNHp (0.1 mM), forskolin (0.1 mM) and sodium fluoride (10 mM) increased the adenylyl cyclase activity 1.8-, 4.4-, 6.7- and 2.4-fold, respectively. Taken together, the presence of VIP in nerve terminals innervating the seminal vesicle of rats and the existence of VIP receptors coupled to adenylyl cyclase strongly suggest a physiological role for this neuropeptide in the modulation of seminal vesicle cell function.  相似文献   

16.
Several VIP analogues have been designed on the basis of the hypothesis that the region from residue 6 to residue 28 forms a pi-helical structure when bound to membrane receptors. An empirical approach for the design and construction of analogues based upon distribution frequency and structural homology with several sequence-related peptides is presented. Five peptides were designed, synthesized, and analyzed. One analogue, model 5, containing the native hydrophobic and an altered hydrophilic surface, was an effective VIP agonist in both binding to rat lung membrane receptors (KD1 = 11 +/- 8 pM, KD2 = 6.4 +/- 0.2 nM; VIP KD1 = 21 +/- 13 pM, KD2 = 1.8 +/- 0.6 nM) and stimulation of amylase release from guinea pig pancreatic acini (ED50 = 90 pM; VIP ED50 = 27 pM). The four other analogues were considerably less potent than VIP, yet retained full intrinsic activity. Our results showed that the hydrophobic surface of this helical domain (residues 6-28) contains amino acids important for interaction with receptors, whereas amino acid residues on the hydrophilic surface do not seem to participate strongly in receptor binding or signal transduction. Furthermore, on the basis of high-affinity binding, the stimulation of amylase release in pancreatic acini appears to be coupled to the higher affinity receptors. These results suggest that an approach based on the construction of putative pi-helical structures can be applied to the design of biologically active analogues of VIP. Thus, we have identified several residues within the VIP sequence that are critical for receptor binding using this approach.  相似文献   

17.
In this study, vasoactive intestinal peptide (VIP) is shown to inhibit substrate adherence capacity of rat peritoneal macrophages. The inhibitory response occurred in the 0.1-1, 000 nM range of VIP concentrations and it was a time-dependent process. At 15 min, half maximal inhibition (ICw) was obtained at 0.37 ± 0.26 nM and maximal inhibition (53.8%) at 10-6 M VIP. The inhibitory effect of VIP was correlated with the stimulation by this peptide of cyclic AMP (cAMP) production in rat peritoneal macrophages. Moreover, agents that inhibited VIP-stimulated cAMP production, such as the VIP-antagonist [4-Cl-D-Phe6 Leu17]-VIP and somatostatin, also decreased the inhibitory effect of VIP on substrate adherence capacity of macrophages. On the contrary, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the lipid-soluble derivative of cAMP N6 2'-O-dibutyryl cAMP (Bu-cAMP) inhibited the adherence of macrophages to substrate and potentiated the inhibitory action of VIP. These results demonstrate that VIP inhibits substrate adherence capacity of rat peritoneal macrophages by a mechanism that involves cAMP, and show, for the first time, an action of VIP on the function of peritoneal macrophages.  相似文献   

18.
Specific, high affinity receptors for vasoactive intestinal peptide (VIP) have been identified on a human pre-B cell line, Nalm 6, and on a human plasma cell line, Dakiki. The single class of high affinity sites exhibited a KD of 12.6 +/- 2.9 nM for VIP in Nalm 6 cells and 9.1 +/- 2.7 nM in Dakiki plasma cells. The homologous peptides, peptide histidine methionine (PHM), growth hormone releasing factor (GHRF), and secretin were all less effective than VIP in competitively inhibiting binding of 125I-VIP to Nalm 6 and Dakiki plasma membranes. The putative receptor was characterized as a 47-kDa protein using covalent cross-linking techniques and VIP stimulated adenylate cyclase in pre-B cells. Human lymphocytes of B cell lineage thus appear to express functional VIP receptors homologous to the receptor identified in T lymphoblasts, brain, pituitary, and intestine.  相似文献   

19.
This study describes functional characteristics of receptors for vasoactive intestinal peptide (VIP) on human Ewing's sarcoma WE-68 cells. These characteristics include 125I-VIP binding capacity, cellular cAMP generation, glycogen hydrolysis, and pharmacological specificity. Binding studies with 125I-VIP showed specific, saturable, binding sites for VIP in WE-68 cells. Scatchard analysis revealed the presence of a single class of high-affinity binding sites that exhibited a dissociation constant (Kd) of 90 pM and a maximal binding capacity (Bmax) of 24 fmol/mg of protein. VIP and VIP-related peptides competed for 125I-VIP binding in the following order of potency: human (h) VIP greater than human peptide with N-terminal histidine and C-terminal methionine (PHM) greater than chicken secretin much greater than porcine secretin. Glucagon and the C-terminal fragments VIP[10-28] and VIP[16-28] and the VIP analogue (D-Phe2)VIP did not inhibit 125I-VIP binding. Addition of hVIP to WE-68 cells provoked marked stimulation of cAMP accumulation, hVIP stimulated increases in cAMP content were rapid, concentration-dependent, and potentiated by 3-isobutyl-l-methylxanthine (IBMX). Half-maximal stimulation (EC50) occurred at 150 nM hVIP. The ability of hVIP and analogues to stimulate cAMP generation paralleled their potencies in displacing 125I-VIP binding. (D-Phe2)VIP, VIP[10-28], VIP[16-28], and (p-Cl-D-Phe6, Leu17)VIP, a putative VIP receptor antagonist, affected neither basal cAMP levels nor hVIP-induced cAMP accumulation. WE-68 cell responses to hVIP were desensitized by prior exposure to hVIP. Desensitization to hVIP did not modify the cAMP response to beta-adrenergic stimulation, and beta-adrenergic agonist desensitization did not modify responses to hVIP. hVIP also induced a time- and concentration-dependent hydrolysis of 3H-glycogen newly formed from 3H-glucose in WE-68 cultures. hVIP maximally decreased 3H-glycogen content by 36% with an EC50 value of about 8 nM. The order of potency of structurally related peptides of hVIP for stimulation of glycogenolysis correlated with their order of potency for inhibition of 125I-VIP binding. IBMX potentiated the glycogenolytic action of hVIP and PHM. The simultaneous presence of the calcium channel antagonist verapamil or the calcium ionophore A 23187 did not influence the glycogenolytic and cAMP stimulatory effects of hVIP. Collectively, these data indicate that Ewing's sarcoma (WE-68) cells are endowed with genuine VIP receptors which are coupled to the formation of cAMP that probably serves a second messenger role in stimulating glycogen hydrolysis in these cells in response to VIP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Helodermin, a newly isolated peptide from Gila Monster venom, is structurally related to VIP and secretin. When used as radioligand, [125I]helodermin bound rapidly and reversibly to crude rat liver membranes, the dissociation being accelerated by GTP. Competition binding curves of [125I]helodermin and [125I]VIP with unlabelled peptides showed the following order of decreasing affinity: VIP greater than helodermin greater than secretin greater than hpGRF(1-29)-NH2. The shape of binding curves and of concurrent adenylate cyclase activation is compatible with the specific labelling, by [125I]helodermin, of a class of high-affinity VIP receptors that is capable to stimulate adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号