首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

2.
Neuroblastoma cell cultures took up linoleic and linolenic acids at approximately equal rates, and incorporated them into a variety of lipid fractions, principally cellular phospholipids. Linoleic acid was preferentially incorporated into choline phosphoglycerides, while most of the radioactivity derived from linolenic acid entered ethanolamine phosphoglycerides. There was no evidence for direct transfer of fatty acids between these two phosphoglyceride fractions. When, after the addition of cytosine arabinoside, cell division was arrested, the entry of labelled fatty acids into ethanolamine and serine phosphoglycerides was reduced, suggesting that these lipids are involved in the formation of new cell membranes. In the ethanolamine phosphoglyceride fraction, phosphatidal ethanolamine (plasmalogen) was the principal acceptor for the higher polyunsaturated fatty acids of the φ 3 series. The ratio of labelled fatty acids entering ethanolamine plasmalogens to that entering ethanolamine phosphoglycerides increased following the addition of cytosine arabinoside, suggesting plasmalogens to be involved in formation of cell processes. The first step in the metabolism of both linoleic and linolenic acid was the addition of a two-carbon unit. Conversion of linoleic acid to higher polyunsaturated fatty acids was slower than the conversion of linolenic acid to its higher analogues. This contrasted with the behaviour of dissociated cultures of normal brain cells which were able to form higher analogues of linoleic and linolenic acids at nearly equal rates.  相似文献   

3.
The essential fatty acid requirement for normal pupal-adult ecdysis in Galleria mellonella was studied using non-axenic casein-based semisynthetic diets with or without various 99% pure fatty acids. The abilities of linoleic and linolenic acids to alleviate faulty adult emergence differed markedly, linolenic acid being 10-fold more potent than linoleic acid. One other ω6 polyunsaturated fatty acid, C20:2ω6, resembled its analogue, linoleic acid (18:2ω6), in efficacy at high dosage, but three others, C18:3ω6, C20: ω6 and C20:4ω6 (arachidonic acid), were without effect. Of five ω3 polyunsatures tested, C22:3ω3 and C20:3ω3 were as effective as linolenic acid (C18:3ω3), their shorter-chained analogue. Docosahexaenoic acid (C22:6ω3) was totally ineffective, but eicosapentaenoic acid (C20:5ω3), though supporting no perfect emergences, produced some active adults having wing malformations only, and was therefore considered partially active. It is suggested that a C18 polyunsaturate is physiologically required by G. mellonella and can be derived from various dietary longer-chained analogues by simple carbon chain shortening so long as there are no additional double bonds carboxylwards of an active di- or trienoic sequence. The partial activity of C20:5ω3 suggests there may additionally be a physiological requirement for this or a related long-chain polyunsaturate. The possibility of multiple essential fatty acid requirements in Lepidoptera in general is discussed.  相似文献   

4.
To examine the impact of intrauterine growth retardation (IUGR) on essential fatty acids in human placenta, fatty acid composition in total acylglycerol and in the major phosphoglycerides phosphatidylcholine (PC) and phosphatidylethanolamine (PE), of 15 placentas from small for gestational age (SGA) births was compared with that of 7 control placentas. The acylglycerol fatty acid content was similar between the two groups, but the proportion of fatty acids of the linoleic acid series, including arachidonic acid, was significantly lower in SGA placentas. When the fatty acid composition in PC was studied, the reduction in fatty acids of the linoleic acid series was even more striking, and fatty acids of the linolenic acid series was also significantly less in the SGA group. These fatty acid changes in placenta membrane phospholipids can affect the transport of important nutrients to the fetal compartment. The decreased level of arachidonic acid and docosahexanoic acid might also lead to a disturbed formation of fetal thromboxane and prostacyclin. However, cord plasma PC fatty acid patterns were nearly identical in the two groups suggesting that in IUGR, the essential fatty acids will be transported to the fetus at the expense of the placenta.  相似文献   

5.
[14C] Linolenic acid (18: omega 3) and [14C] linoleic acid (18:2 omega 6) were incubated with hepatic microsomes of the rabbit in the presence of NADPH (1 Mm) for 15 min at 37 degrees C. The products were extracted and purified by high performance liquid chromatography. The major metabolites of linolenic and linoleic acid were identified by capillary gas chromatography mass spectrometry as 15,16-dihydroxy-9,12-octadecadienoic acid, 12,13-dihydroxy-9,15-octadecadienoic acid and 9,10-dihydroxy-12,15-octadecadienoic acid and as 12,13-dihydroxy-9-octadecaenoic acid and 9,10-dihydroxy-12-octadecaenoic acid, respectively. The results were confirmed by comparison with mass spectra of the authentic compounds. These metabolites are presumably formed by cytochrome P-450 catalyzed epoxidation of the omega 3, omega 6 and omega 9 double bonds, followed by enzymatic hydrolysis to 1,2-diols. The ratio of omega 3, omega 6 and omega 9 oxygenated metabolites of linolenic acid was approximately 2:1:1 and the ratio of the omega 6 and omega 9 metabolites of linoleic acid was 2:1, indicating that the double bond closest the omega end is most easily oxygenated.  相似文献   

6.
Lipids were extracted from alfalfa samples collected at intervals over the growing season and were fractionated to yield pure sulfolipid. In the sulfolipid and in a phospholipid fraction the major fatty acids were palmitic, linolenic, and linoleic, of which the palmitic acid increased in proportion during the season while the proportion of linolenic acid dropped. The sulfolipid contained more linolenic acid and less palmitic and linoleic acids than the phospholipids, and had a greater rate of change of fatty acid composition.  相似文献   

7.
When heterotrophic cell cultures of red goosefoot (Chenopodium rubrum) turned photoautotrophic, their contents of various glycolipids and phospholipids increased. The total lipids and the individual lipid classes, especially monogalactosyldiacylglycerols, became richer in linolenic and poorer in linoleic acids. When photoautotrophic cell cultures were rendered heterotrophic again a reversal of changes occurred; both the composition of lipids and the patterns of their constituent fatty acids became similar to those of the starting heterotrophic cultures.The results indicate that the biosynthesis of linolenic acid in photoautotrophic cell cultures involves mainly desaturation of linoleic acid and that chain extension of hexadecatrienoic acid is possibly another, though minor pathway. Monogalactosyldiacylglycerols are apparently the substrates preferred for linolenic acid biosynthesis, whereas various phospholipids are the substrates preferred for linoleic acid biosynthesis.During a growth period of 6 weeks, the levels of polyunsaturated fatty acids in the lipids from both heterotrophic and photoautotrophic cell cultures decrease with time, whereas the proportions of palmitic acid increase.  相似文献   

8.
Abstract— Three dietary levels of essential fatty acids, 30, 0-75 and 007 calorie-%, with a linoleic: linolenic acid ratio of 4:1, were fed to rats for two generations. In the third generation the weight of the cerebrum and the concentration of its lipids and the fatty acid composition of phosphoglycerides were determined from term to 120 days of age. The cerebral weights and the concentrations of phospholipids, cholesterol and cerebrosides differed only slightly between the three dietary groups. The accretion of fatty acids of the linoleic acid series was independent of the dietary essential fatty acid level while the accretion of fatty acids of the linolenic acid series was markedly reduced in the groups with low essential fatty acid supply. The sum of the total polyunsaturated fatty acids in ethanolamine phosphoglycerides differed only slightly between the groups. The proportion of the major polyunsaturated fatty acid of the linoleic acid series was equal between the groups while that of 22:6 (n-3) was much lower in the groups fed 007 calorie % essential fatty acids. In these latter groups the relative concentrations of 22:5 (n-6), 20:3 (n-9) and 22:3 (n-9) were increased. The differences in the fatty acid composition were dependent on the age of the rats. They were largest in newborn rats and diminished with age after weaning.  相似文献   

9.
The isolation of a new lipoxygenase-like (LOX-like) enzyme from Pseudomonas 42A2 and its characterization is described. The enzyme, located in the periplasm of the cell, which contained 0.55 mol of Fe2+ per mol of protein, is monomeric and has a molecular mass of 45 kDa. In the presence of oxygen, the enzyme converts oleic acid into (E)-10-hydroperoxy-8-octadecenoic acid (HPOD), which decomposes to the corresponding (E)-10-hydroxy-8-octadecenoic acid (HOD). The absolute configuration of this acid was determined as S on the basis of exciton-coupled CD data, and specific rotation and NMR analysis of the corresponding p -bromobenzoate derivative. The reaction in vivo leads to the dihydroxy derivative (E)-7,10-dihydroxy-8-octadecenoic acid (DHOD), so that the three hydroxy-fatty acids can be isolated from the culture medium. The activity of the enzyme was optimal between 25 and 30 degrees C and 44% of its activity still remained at 55 degrees C. Its optimal pH is 8.5-9; and the presence of magnesium ions increased LOX activity by 1.5. The activity of the LOX is highest in unsaturated fatty acids containing double bonds in position 9 (oleic, linoleic and linolenic acids), linoleic acid being preferred (100% activity) over linolenic (60.4%) and oleic acids (46%). However, kinetic studies showed that the affinity of the enzyme is similar for the three substrates.  相似文献   

10.
The substrate selectivity of several microbial lipases has been examined in the esterification of oleic acid, linoleic acid, linolenic acid and their all-trans-isomers and in the alcoholysis of isomeric linoleic acid methyl esters with n-butanol. Lipases from Candida cylindracea and Mucor miehei preferred fatty acids and methyl esters with a (first) cis double bond in 9-position, while Chirazyme L-5, a Candida antarctica lipase A, had a preference for trans-9 unsaturated substrates.  相似文献   

11.
Fatty acid compositions of peach (Prunus persica L. Batsch) mesocarp tissues from ‘Kawanakajima Hakuto’ and its firm-fleshed mutant ‘Shuangjiuhong’ were examined by gas chromatography during the developmental stages from 20 days before to 20 days after fruit ripening. Fruits were harvested at 4-day intervals from July to September. The predominant fatty acids were linoleic, palmitic and linolenic acids with 27.66–48.93 %, 23.59–31.65 %, and 12.08–28.35 % in ‘Shuangjiuhong’, and 32.64–42.79 %, 23.53–28.95 %, 16.14–39.15 % in ‘Kawanakajima Hakuto’, respectively. Saturated fatty acids (palmitic and stearic acids) remained relatively constant throughout the ripeness period. On the contrast, from 15 days before ripening, notable decline in oleic acid and increase of linoleic and linolenic acids were observed in both cultivars. In addition, from 10 days before ripening, much lower levels of oleic and linolenic acids and higher proportion of linoleic acid were observed in ‘Shuangjiuhong’ than those found in ‘Kawanakajima Hakuto’. And notably higher SFA level, lower levels of UFA and IUFA in the firm-fleshed peach were investigated during those stages. Correlation analysis showed that oleic acid and SFA had very significantly positive, whereas linolenic acid, UFA and IUFA had significantly negative correlation with fruit firmness. These results above suggest that lower levels of oleic and linolenic acids, UFA and IUFA, and higher linoleic acid and SFA content represent fruits with firmer flesh and help to retain the fruit texture.  相似文献   

12.
The goal of this work was to study how the acidity of a medium influenced the light-dependent antibacterial activity of fatty acids towards Staphylococcus aureus. The antibacterial activity of arachidonic, linolenic, linoleic and oleic acids increased abruptly (by 1-2 orders of magnitude) under the action of visible light, it became more intensive with a rise in the number of double bonds in a fatty acid molecule, and the maximum shifted from the neutral region to an alkaline one as the aeration was intensified. In the case of saturated fatty acids (palmitic and stearic), the antibacterial activity with a maximum in the alkaline region was detected only in the light. The effect exerted by the number of double bonds in a fatty acid molecule and by the acidity of a medium on the mechanisms of fatty acid photooxidation is discussed.  相似文献   

13.
The fatty acids oleic, linoleic, and linolenic, each of which has a cis double bond at the delta 9 position, are known to lengthen the circadian period of conidiation (spore formation) of strains of Neurospora crassa carrying the cel mutation. cel confers a partial fatty acid requirement on the organism and has been used to promote incorporation of exogenous fatty acids. To test whether a physical effect imparted by the cis double bonds, such as increased membrane fluidity, is critical for the perturbation of the rhythm, various isomers of these fatty acids were supplemented to the bd csp cel strain. Positional isomers of oleic acid, such as petroselinic (delta 6) and vaccenic (delta 11) acids, and longer-chain isomers, such as eicosenoic (delta 11) and erucic (delta 13) acids, did not lengthen the rhythm. The shorter-chain palmitoleic (delta 9) acid did not give a consistent lengthening of the rhythm; it may be elongated to vaccenic acid. In contrast, gamma-linolenic acid (delta 6,9,12) dramatically lengthened the period. Linoelaidic acid (the trans,trans isomer of linoleic acid) lengthened the period at 22 degrees C, but elaidic acid (the trans isomer of oleic acid) did not. Elaidic acid was shown to exert a lengthening effect, but only at lower temperatures. The data do not support a direct physical action as the source of the fatty acids' "chronobiotic" ability.  相似文献   

14.
Abstract The cellular long-chain fatty acids of 32 strains representing 10 species of the genus Kluyveromyces were extracted by saponification and analyzed as methyl esters by gas chromatography. The Kluyveromyces strains were characterized by the presence of palmitate, palmitoleate, oleate, and linoleic acid as the major fatty acids. These strains were divided into 3 groups on the basis of fatty acid content. The first group was characterized by a high percentage of linolenic acid, the second group of a lower percentage and the third group by the absence of linolenic acid.  相似文献   

15.
The identification and composition of the fatty acids of the major lipid classes (triacylglycerols and phospholipids) within Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) nymphs were determined. Comparisons were made to fatty acids from the internal lipids of B. argentifolii adults. The fatty acids, as ester derivatives, were analyzed by capillary gas chromatography (CGC) and CGC-mass spectrometry (MS). All lipid classes contained variable distributions of eight fatty acids: the saturated fatty acids, myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), arachidic acid (20:0); the monounsaturated fatty acids, palmitoleic acid (16:1), oleic acid (18:1); the polyunsaturated fatty acids, linoleic acid (18:2), linolenic acid (18:3). Fourth instar nymphs had 5-10 times the quantities of fatty acids as compared to third instar nymphs and 1-3 times the quantities from adults. The fatty acid quantity differences between fourth and third instar nymphs were related to their size and weight differences. The percentage compositions for fatty acids from each lipid class were the same for the pooled groups of third and fourth instar nymphs. For nymphs and adults, triacylglycerols were the major source of fatty acids, with 18:1 and 16:0 acids as major components and the majority of the polyunsaturated fatty acids, 18:2 and 18:3 were present in the two phospholipid fractions, phosphatidylethanolamine and phosphatidylcholine. Evidence was obtained that whiteflies indeed synthesize linoleic acid and linolenic acid de novo: radiolabel from [2-(14)C] acetate was incorporated into 18:2 and 18:3 fatty acids of B. argentifolii adults and CGC-MS of pyrrolidide derivatives established double bonds in the Delta(9,12) and Delta(9,12,15) positions, respectively.  相似文献   

16.
The work of adhesion between water and a heptane solution of phospholipids extracted from spring (cv. Jara) and winter (cv. Grana) wheat ( Triticum aestivum L.) grown at 2°C and 20°C was measured in order to determine the effect of changes in the composition of fatty acids on the hydrophilic properties of the lipid bilayer of membranes. The work of adhesion water/phospholipids was positively correlated with the contents of the oleic and linoleic acids (18:1 and 18:2, respectively) and negatively correlated with the content of linolenic acid (18:3) in the phospholipids. The sensitivity of the work of adhesion to changes in the particular fatty acids decreased with increasing number of double bonds. In addition, it depended on the genotype and on the temperature of growth of the seedlings.  相似文献   

17.
Conjugated linolenic acids (CLN) refer to a group of octadecatrienoic acids with three conjugated double bonds. Minor positional and geometrical differences among CLN isomers make their separation and identification difficult. We have used GC-MS and NMR to study three common CLN isomers namely alpha-eleostearic acid, beta-eleostearic acid and punicic acid, finding that some signals of olefinic carbon atoms in NMR spectra were mistakenly assigned in the literature. The present study was therefore undertaken to re-characterize the location of CC double bonds and assign the chemical signals of proton and carbon atoms using (1)H NMR, (13)C NMR, (1)H-(1)H two-dimensional correlation spectra ((1)H-(1)H COSY) and (13)C-(1)H two-dimensional correlation spectra ((13)C-(1)H COSY). The geometrical structure of double bonds in these three CLN isomers was identified using homonuclear decoupling technique.  相似文献   

18.
Abstract— Rat cerebrum was analysed at 20 different ages from birth to 45 days of age, for its concentration of protein, cholesterol, cerebrosides, phospholipids and gangliosides, and for the concentration of fatty acids of the linoleic and linolenic acid series. The fatty acid patterns of choline phosphoglycerides and ethanolamine phosphoglycerides were determined at the same ages. Phases of rapid accretion were found for protein, phospholipids, gangliosides and cholesterol. The accretion of the fatty acids of the linoleic acid series ceased at 20 days of age, while that of the fatty acids of the linolenic acid series continued. The fatty acid composition of the phosphoglycerides changed during the maturation of rat cerebrum and these changes consisted of chain elongation, increased unsaturation and variation in the pattern of the polyenoic acids. These changes varied irregularly with age and each developmental stage had characteristic fatty acid patterns of choline and ethanolamine phosphoglycerides.  相似文献   

19.
Functional group analogs of oleic, linoleic and linolenic acids were prepared by coverting their double bonds to dibromo, cyclopropyl, epoxy, methoxy, and, in the case of oleic acid, hydroxy groups. These compounds were supplemented to the bd csp cel strain of the mold Neurospora crassa. The cel mutation confers a partial requirement for saturated fatty acids and, also, perturbs the circadian rhythm of spore formation. For example, the period of bd csp cel's rhythm is dramatically lengthened upon supplementation by natural cis-unsaturated fatty acids. Of the analogs tested, only the monoepoxy, monomethoxy, dibromo, and hexabromo stearic acids gave significant period lengthening. Other analogs, which should have comparable abilities to disrupt lipid bilayer packing, gave no rhythm effect. Further, the inactive di- and tri-methoxystearic acid analogs were incorporated to a greater extent than the active mono-methoxystearic acid. The results do not, therefore, support a direct alteration in membrane "fluidity' as the mode of action of the period-lengthening fatty acids.  相似文献   

20.
Of the three morphological subunits of Avena sativa stem segments (node, leaf-sheath and internode) examined, internodes constituted the richest source of phospholipids and sterols, yielding almost double the concentration of lipid found in the leaf-sheath. The phospholipid compositions of nodes and internodes were similar, comprising mostly phosphatidylcholine (PC) and phosphatidylethanolamine (PE), with linoleic, linolenic and palmitic acids as the predominant component fatty acids. Leaf-sheath tissue contained mainly PE, with equally high amounts of palmitic, linoleic and linolenic acids. β-Sitosterol and cholesterol were the major 4-desmethylsterols of the internode, while β-sitosterol was predominant in the node and leaf-sheath tissues. The growth temperature of segments prior to isolation produced its major effect on the concentration of stigmasterol, which decreased markedly with temperature. The sitosterol/stigmasterol ratio increased significantly as temperature decreased. Stem segments isolated from plants treated with gibberellic acid (GA3) for 3 weeks, showed a significant reduction in the amounts of 4-desmethyl sterols on a dry wt basis when compared with control segments. However, when stem segments were incubated with GA3 for 20 hr, no change in 4-desmethylsterol composition or concentration was observed, even though significant growth in response to GA3 occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号